

Sondiergesuch NSG 16-13

Gesuch um Erteilung einer Bewilligung für erdwissenschaftliche Untersuchungen im Standortgebiet Zürich Nordost (ZNO)

Sondierbohrungen Rheinau

September 2016

Nationale Genossenschaft für die Lagerung radioaktiver Abfälle

> Hardstrasse 73 Postfach 280 5430 Wettingen Telefon 056-437 11 11

> > www.nagra.ch

nagra.

Sondiergesuch NSG 16-13

Gesuch um Erteilung einer Bewilligung für erdwissenschaftliche Untersuchungen im Standortgebiet Zürich Nordost (ZNO)

Sondierbohrungen Rheinau

September 2016

Nationale Genossenschaft für die Lagerung radioaktiver Abfälle

> Hardstrasse 73 Postfach 280 5430 Wettingen Telefon 056-437 11 11

> > www.nagra.ch

Inhaltsverzeichnis

Inhaltsve	erzeichnis	I
Tabellen	verzeichnis	IV
Figurenv	verzeichnis	IV
Beilagen	verzeichnis	V
Abkürzu	ngen	VII
Gesetze	und Verordnungen	XI
1	Einleitung und Zielsetzung	1
2	Geologischer Bericht (nach Art. 60 KEV)	5
2.1	Überblick zur Datenlage	5
2.2	Referenzberichte	5
2.3	Geologische Schichtfolge und potenziell einschlusswirksamer Gebirgsbereich im Standortgebiet	7
2.4	Tektonik des Standortgebiets	
2.5	Hydrogeologie und Hydrochemie	11
3	Untersuchungsprogramm (nach Art. 59 KEV)	
3.1	Zielsetzung der Standortuntersuchungen (nach Art. 59a KEV)	15
3.2	Generelles Untersuchungs- und Bohrkonzept	15
3.3	Vorgesehene Untersuchungen (nach Art. 59b KEV)	17
3.3.1	Geologie	18
3.3.2	Bohrlochgeophysik	19
3.3.3	Untersuchungen Hydrogeologie und Hydrochemie	21
3.3.4	Geotechnik	22
3.4	Beginn, Dauer und Programmanpassungen (nach Art. 59c KEV)	23
4	Rechtliche Voraussetzungen für die Bewilligung des Bohrplatzes	25
4.1	Rechtslage und Prüfungsumfang	25
4.2	Befristung	25
4.3	Rechtsverhältnisse am Bohrplatz	26
5	Technische Gesuchsunterlagen (nach Art. 58 KEV)	
5.1	Örtliche Gegebenheiten	
5.2	Platzerstellung und -ausrüstung	
5.3	Bohrkeller	
5.4	Nebenanlagen	
5.4.1	Container	34
5.4.2	Parkplatz	34

5.4.3	Umzäunung	34
5.5	Erschliessung und Verkehr	34
5.5.1	Verkehrserschliessung	34
5.5.2	Strassenbelastung.	35
5.6	Wasserversorgung	36
5.7	Entsorgung	37
5.7.1	Häusliches Abwasser	38
5.7.2	Meteorwasser	38
5.7.3	Bohrspülung	38
5.7.4	Abfälle und Materialbewirtschaftung	39
5.8	Stromversorgung	39
5.9	Aggregate und Fahrzeuge	40
5.10	Telekommunikation	41
5.11	Ausleuchtung	41
5.12	Rekultivierung	42
6	Aspekte des Umwelt-, Natur- und Heimatschutzes und der	42
6.1	Raumplanung	
6.2	Interessenabwägung für erdwissenschaftliche Untersuchungen	
6.2.1	Methodik der Auswahl des Bohrplatzes	
6.2.2	Geologische Verhältnisse und geeignete Gebiete im Untergrund	
6.2.3	Zielsetzungen der Sondierbohrungen Rheinau	
6.2.3	Raum- und umweltplanerische Kriterien an der Oberfläche	
6.3.1	Eingrenzung und Auswahl des Bohrplatzes	
	Schritt 1 – Bauzonen	
6.3.2	Schritt 2 – Raum- und umweltplanerische Kriterien	
6.3.3	Schritt 3 – Überprüfung kantonaler Vorgaben	
6.3.4	Schritt 4 – Bautechnische Vorgaben	
6.3.5	Schritt 5 – Betriebliche Vorgaben	
6.3.6 6.3.7	Schritt 7 — Overlitetive Powrteilung der Bestflächen	
6.4	Schritt 7 – Qualitative Beurteilung der Restflächen	
	Relevanzmatrix des Bohrplatzes Rheinau	03
6.5	Raum- und umweltplanerische Charakterisierung des Bohrplatzes der Sondierbohrungen Rheinau	64
6.5.1	Luftreinhaltung	64
6.5.2	Lärm	64
6.5.3	Lichtimmissionen	65
6.5.4	Erschütterungen	65
6.5.5	Grundwasser	66
6.5.6	Oberflächengewässer und aquatische Ökosysteme	68
6.5.7	Entwässerung des Bohrplatzes	70
6.5.8	Naturgefahren	70
6.5.9	Boden/Fruchtfolgeflächen	71

Anhang	A: Liste der verwendeten GIS-Daten Rheinau	A-1
9	Literaturverzeichnis	91
8.3	Anträge	89
8.2	Befristungen (nach Art. 36 Abs. 2 KEG)	
8.1.2	Entgegenstehende Interessen (Abwägung nach Art. 3 RPV)	87
8.1.1	Eignung (gemäss Art. 35 Abs. 2 lit. a KEG)	87
8.1	Bewilligungsvoraussetzungen (nach Art. 35 KEG)	87
8	Antrag	87
7.6	Auftreten von Gas	84
7.5	Induzierte Seismizität	84
7.4	Verfüllung / Versiegelung von Sondierbohrungen	83
7.3	Langzeitbeobachtung	82
7.2	Grundwasser und Aquifere	82
7.1	Einschlusswirksamer Gebirgsbereich	79
7	Mögliche Auswirkungen der Untersuchungen auf die Geologie und Umwelt (nach Art. 58 KEV)	79
6.5.18	Raum- und Nutzungsplanung	78
6.5.17	Störfallvorsorge/Katastrophenschutz	78
6.5.16	Kulturdenkmäler und archäologische Stätten	
6.5.15	Landschaft und Ortsbild	76
6.5.14	Flora, Fauna, Lebensräume	74
6.5.13	Wald	74
6.5.12	Umweltgefährdende Organismen	74
6.5.11	Abfälle, umweltgefährdende Stoffe	73
6.5.10	Altlasten	72

Tabellenverzeichnis

Tab. 2.1:	Überblick über die wichtigsten Nagra-Referenzberichte zur Geologie des Standortgebiets Zürich Nordost.	6
Tab. 5.1:	Abmessungen Bohrkeller (Innenmasse).	30
Tab. 5.2:	Entsorgungswege für Feststoffe und Fluide.	39
Tab. 6.1:	Qualitative Standortbeurteilung im Betrachtungsraum für die Interessenabwägung der Sondierbohrungen Rheinau.	61
Tab. 6.2:	Relevanzmatrix der Umweltbereiche für die Bau-, Betriebs- und Beobachtungsphase des Bohrplatzes der Sondierbohrungen Rheinau	63
Tab. 7.1:	Maximale Dosis innerhalb des jeweiligen Betrachtungszeitraums für vollständige Lagerkonfigurationen mit mehreren tiefen Bohrungen sowie für verschiedene Abstände zwischen Tiefenlager und tiefen Bohrungen in [mSv/a].	80
Figuren	verzeichnis	
Fig. 2.1:	Schematisches stratigraphisch-hydrogeologisches Sammelprofil für das Standortgebiet Zürich Nordost (nach Nagra 2014b, Dossier II)	9
Fig. 5.1:	Lage und Grösse des Standorts des Bohrplatzes Rheinau.	27
Fig. 5.2:	Geologische Karte im Bereich des Standorts der Sondierbohrungen Rheinau	29
Fig. 5.3:	Grundriss des Bohrkellers für fünf Bohrrichtungen.	31
Fig. 5.4:	Längsschnitt (B-B) des Bohrkellers mit den Bohrrichtungen Osten und Westen und Vertikal und den entsprechenden Bohransatzpunkten (Lage des Schnitts vgl. Beilage 8)	32
Fig. 5.5:	Querschnitt des Bohrkellers (A-A) mit den Bohrrichtungen Norden und Süden und den entsprechenden Bohransatzpunkten (Lage des Schnitts vgl. Beilage 8)	
Fig. 5.6:	Karte zur Erschliessung des Standorts der Sondierbohrungen Rheinau	
Fig. 5.7:	Karte zur Erschliessung des Standorts der Sondierbohrungen Rheinau mit Wasser, Abwasser und Strom.	
Fig. 5.8:	Beispielhafte Ausleuchtung des Arbeitsbereichs für den Bohrplatz (Leuchte mit Wirkungsbereich).	41
Fig. 6.1:	Tektonische Situation und Lagerperimeter im Standortgebiet Zürich Nordost (ZNO) mit dem Bohrplatz Rheinau und dem Betrachtungsraum für die Interessenabwägung.	44
Fig. 6.2:	Darstellung von Bauzonen	52
Fig. 6.3:	Darstellung der raumplanerischen und umweltrechtlichen Kriterien.	53
Fig. 6.4:	Darstellung der kantonalen Schutzgebiete	55
Fig. 6.5:	Darstellung der bautechnischen Vorgaben.	56

Fig. 6.6:	Darstellung der betrieblichen Vorgaben.	58
Fig. 6.7:	Darstellung der Sonderflächen.	59
Fig. 6.8:	Abwägung der qualitativen Kriterien.	60
Fig. 6.9:	Auszug aus der Gewässerschutzkarte des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.	67
Fig. 6.10:	Grundwasserverhältnisse (Mittelwasser) beim Standort der Sondierbohrungen Rheinau.	68
Fig. 6.11:	Oberflächengewässer im Bereich des Standorts der Sondierbohrungen Rheinau.	69
Fig. 6.12:	Auszug aus der Gefahrenhinweiskarte des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.	70
Fig. 6.13:	Landnutzung im Bereich des Standorts der Sondierbohrungen Rheinau.	72
Fig. 6.14:	Auszug aus dem Kataster der belasteten Standorte (KbS) und dem Prüfperimeter für Bodenverschiebungen (PBV) des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.	73
Fig. 6.15:	Naturschutzzonen beim Standort der Sondierbohrungen Rheinau.	75
Fig. 6.16:	Landschaftsschutzflächen beim Standort für die Sondierbohrungen Rheinau	76
Fig. 6.17:	Archäologische relevante Flächen und Kulturgüter beim Standort der Sondierbohrungen Rheinau.	77
Fig. 7.1:	Lage und Ausdehnung der möglichen Bohrpfade der Sondierbohrungen Rheinau in Bezug auf den HAA-Lagerperimeter mit Sicherheitsabstand von r = 50 m um die potenziellen Bohrpfade.	81
Beilagen	nverzeichnis	
Beilage 1:	Geologische Profile durch das Standortgebiet Zürich Nordost (nach Nagra 2014	4b)
Beilage 2:	Geologisches Profil der Seismiklinie 91-NO-68 1:50'000 (nach Nagra 2014b)	
Beilage 3:	Schematisches geologisches Prognoseprofil für die Sondierbohrungen Rheinau	
Beilage 4:	Übersicht Standort und Hauptabmessungen Bohrplatz der Sondierbohrungen Rheinau 1:1'000	
Beilage 5:	Situation der Sondierbohrungen Rheinau, 1:500	
Beilage 6:	Längsschnitt A-A der Sondierbohrungen Rheinau, 1:100	
Beilage 7:	Querschnitte 1-1, 2-2, 3-3 der Sondierbohrungen Rheinau, 1:100	
Beilage 8:	Detailplan Bohrkeller Mehrfachbohrungen der Sondierbohrungen Rheinau, 1:50	0
Beilage 9:	Situation Rekultivierungsmassnahmen (Langzeitbeobachtung) der Sondierbohrungen Rheinau, 1:500	

Abkürzungen

ABI	Acoustical Borehole	Cl	Chlorid
ADI	Imager	C_1 CO_2	Kohlenstoffdioxid
Abs.	Absatz	CO_2 CH_4	Methan
AltlV	Altlastenverordnung	dB(A)	Dezibel
Anhy.	Anhydrit	DIL	Dual Induction Log
ARA	Abwasserreinigungs-	DLL	_
	anlage	DLL DN	Dual Lateral Log
Art.	Artikel		Nennweite von Rohren
ASTRA	Bundesamt für Strassen	DTV	Durchschnittlicher Tagesverkehr
A_{u}	Gewässerschutzbereich	EBG	Eisenbahngesetz
	mit nutzbaren Grund-	EDV	Elektronische Daten-
A 3.7	wasservorkommen		verarbeitung
AV	Amtliche Vermessung	EG	Einschlusswirksamer
AWEL	Amt für Abfall, Wasser, Energie und Luft des		Gebirgsbereich
	Kantons Zürich	EKZ	Elektrizitätswerke des Kantons Zürich
BAFU	Bundesamt für Umwelt	ENSI	Eidgenössisches Nuklear-
BBB	Bodenkundliche Baubegleitung		sicherheitsinspektorat (ehemals HSK)
BbergG	Bundesberggesetz	ES	Einlaufschacht für
	(Deutschland)		Abwasserentsorgung
BFE	Bundesamt für Energie	ESTI	Eidgenössisches
BG	Bundesgericht		Starkstrominspektorat
BHTV	Borehole-TV	EWS	Erdwärmesonden
BLN	Bundesinventar der Land- schaften und Naturdenk-	FEL	Fokussierte Elektrische Widerstandsmessung
	mäler von nationaler	FFF	Fruchtfolgefläche
DID	Bedeutung	Fm.	Formation
BLR	Baulärm-Richtlinie	Fr.	Frühe
BMJV	Bundesministerium der Justiz und für Verbrau-	FWS	Full-Waveform Sonic
	cherschutz (Deutschland)	GEP	Genereller
BOP	Blow Out Preventer		Entwässerungsplan
BV	Bundesverfassung der	GIS	Geoinformationssysteme
	schweizerischen Eidgenossenschaft	GIS-ZH	Geographisches Informationssystem des Kantons
BVOT	Deutsche Bergverordnung		Zürich
DVOI	für Tiefbohrungen (auch	GRS	Gesellschaft für Anlagen-
	BVT genannt)		und Reaktorsicherheit
¹⁴ C	radioaktives Nuklid des		GmbH (Deutschland)
	Kohlenstoffs	GSchG	Gewässerschutzgesetz
Ca	Calcium		

GSchV	Gewässerschutz-	Lr	Lärmbeurteilungspegel
GBen v	verordnung	LRV	Luftreinhalte-Verordnung
GVM-ZH	Kantonales Gesamt-	LSV	Lärmschutz-Verordnung
	verkehrsmodell (ZH)	LV	Landesvermessung
GU	Gusseisen	LZB	Langzeitbeobachtung
h	Höhe	Mb.	Member
H_2S	Schwefelwasserstoff	Mittl.	Mittlere
HAA	Hochaktive Abfälle	MS	
HCO_3	Hydrogenkarbonat	mSv/a	Mittelspannung Millisievert pro Jahr
Humphr.oolith	Humphriesioolith	m ü.M.	Meter über Meer
HWSchV ZH	Hochwasserschutz-	m u.T.	Meter unter Terrain
	verordnung Kanton Zürich	MurchOolith	Murchisonae-Oolith
ICW			Mikrotesla
IGW	Immissionsgrenzwerte	μT	
IL	Induction Log	Na NAD	Natrium
ISOS	Bundesinventar der schützenswerten Orts-	NAB	Nagra Arbeitsbericht
	bilder der Schweiz von nationaler Bedeutung	Nagra	Nationale Genossenschaft für die Lagerung radio-
IVS	Bundesinventar der	NHC	aktiver Abfälle
110	historischen Verkehrs- wege der Schweiz	NHG	Natur- und Heimatschutz- gesetz
JO	Geologisches Standort- gebiet Jura Ost	NISV	Verordnung über den Schutz vor nicht- ionisierender Strahlung
JSG	Jagdgesetz	NL	Geologisches Standort-
KWaV ZH	Kantonale Waldverord-	1,2	gebiet Nördlich Lägern
	nung des Kantons Zürich	NS	Niederspannung
KatNr.	Katasternummer	NSG 16-XX	Nagra Sondiergesuch
KbS	Kataster der belasteten	NSG	Nationalstrassengesetz
WEG	Standorte	NTB	Nagra Technischer
KEG	Kernenergiegesetz		Bericht
KEV	Kernenergieverordnung	Ob.	Obere/Oberer
KS	Kanalisationsschacht	OBI	Optical Borehole Imager
kV	Kilovolt	OKT	Oberkante Terrain
kVA	Kilovoltampere	PäV	Pärkeverordnung
K-Wert	Durchlässigkeitsbeiwert		(nationale Bedeutung)
LED	Licht-emittierende Diode	ParkWürtt.	Parkinsoni-Württem-
Let.kohle	Lettenkohle	DDC 711	bergica-Schichten
lit.	Lat. littera, Buchstabe	PBG ZH	Planungs- und Baugesetz des Kantons Zürich
LKW	Lastkraftwagen	PBV	Prüfperimeter für Boden-
LMA	Langlebige mittelaktive Abfälle		verschiebungen
LP	Lagerperimeter	PE	Polyethylen
1-/1	Laborbornington	1	

РЕН	Polyethylen, hart	S3	Grundwasserschutzzone S3, weitere Schutzzone
ppm	parts per million	T	Transmissivität
PVCH	Polyvinylchlorid, hart	TDS	Tragdeckschicht
PW	Planungswerte	TriD.	Trigonodus-Dolomit
RBG	Rahmenbewilligungs-	TS.	
DICM	gesuch		temporäre Trafostation
RLSV	Verordnung über Sicherheitsvorschriften für Rohrleitungsanlagen	TVA	Technische Verordnung über Abfälle (aufgehoben)
RQD	Rock Quality Designation Index	TWW	Bundesinventar der Trockenwiesen und -weiden von nationaler
RPG	Raumplanungsgesetz		Bedeutung
RPV	Raumplanungsverordnung	üВ	übriger Bereich bezüglich des Gewässerschutzes
RW	Regenwasser	unpubl.	nicht publiziert
S	Schwefel	Unt.	Untere/Unterer
S.	Schicht	USG	Umweltschutzgesetz
SBB	Schweizerische	USM	Untere
	Bundesbahnen SBB	USIVI	Süsswassermolasse
SB-Experiment	Selfsealing Barriers of Clay/Sand Mixtures in a Clay Repository	UVEK	Departement für Umwelt, Verkehr, Energie und Kommunikation
Sch.	Schicht	UVP	Umweltverträglich-
SED	Schweizerischer Erdbebendienst		keitsprüfung
SGT-E1 – E3	Sachplan geologische	VariansmFm.	Variansmergel-Formation
SGT-LT - L3	Tiefenlager – Etappen 1 bis 3	VBBo	Verordnung über Belastungen des Bodens
SIA	Schweizerischer Ingenieur- und	VeVA	Verordnung über den Verkehr mit Abfällen
GT 4 4	Architektenverein	VÖV	Verband Öffentlicher Verkehr
SLA-1	Geothermiebohrung Schlattingen SLA-1	VSP	Vertical Seismic Profiling
SMA	Schwach- und	VVEA	Verordnung über die
SIVIA	mittelaktive Abfälle	VVLA	Vermeidung und Entsor-
SN	Schweizer Norm		gung von Abfällen (ehe-
SO_4	Sulfat		mals Technische Verord- nung über Abfälle TVA)
StSV	Störfallverordnung	WaG	Waldgesetz
SUVA	Schweizerische	wag Wlan	Wireless Local Area
	Unfallversicherungs- anstalt	WLAN	Network
S1	Grundwasserschutzzone	ZNO	Geologisches Standort-
Ŋ1	S1, Fassungsbereich		gebiet Zürich Nordost
S2	Grundwasserschutzzone	2D	zweidimensional
	S2, engere Schutzzone	3D	dreidimensional

Gesetze und Verordnungen

- Bundesgesetz über die Jagd und den Schutz wildlebender Säugetiere und Vögel (Jagdgesetz, JSG, SR 922.0) vom 20. Juni 1986 (Stand am 1. Januar 2014)
- Bundesgesetz über die Nationalstrassen (Nationalstrassengesetz, NSG, SR 725.11) vom 8. März 1960 (Stand am 1. Januar 2016)
- Bundesgesetz über die Raumplanung (Raumplanungsgesetz, RPG, SR 700) vom 22. Juni 1979 (Stand 1. Januar 2014)
- Bundesgesetz über den Natur- und Heimatschutz (Natur- und Heimatschutzgesetz, NHG, SR 451) vom 1. Juli 1966 (Stand 12. Oktober 2014)
- Bundesgesetz über den Schutz der Gewässer (Gewässerschutzgesetz, GSchG, SR 814.20) vom 24. Januar 1991 (Stand 1. Januar 2016)
- Bundesgesetz über den Umweltschutz (Umweltschutzgesetz, USG, SR 814.01) vom 7. Oktober 1983 (Stand 1. April 2015)
- Bundesgesetz über den Wald (Waldgesetz, WaG, SR 921.0) vom 4. Oktober 1991 (Stand am 1. Juli 2013)
- Bundesverfassung der Schweizerischen Eidgenossenschaft (BV, SR 101) vom 18. April 1999 (Stand 1. Januar 2016)
- Eisenbahngesetz (EBG, SR 742.101) vom 20. Dezember 1957 (Stand am 1. Januar 2016)
- Gewässerschutzverordnung (GSchV, SR 814.201) vom 28. Oktober 1998 (Stand 2. Februar 2016)
- Kantonale Waldverordnung des Kantons Zürich (KWaV, SR 921.111) vom 29. Oktober 1997 (Stand 01. Januar 2014).
- Kernenergiegesetz (KEG, SR 732.1) vom 21. März 2003 (Stand 1. Juli 2016)
- Kernenergieverordnung (KEV, SR 732.11) vom 10. Dezember 2004 (Stand 1. Mai 2012)
- Lärmschutz-Verordnung (LSV, SR 814.41) vom 15. Dezember 1986 (Stand 1. Januar 2016)
- Luftreinhalte-Verordnung (LRV, SR 814.318.142.1) vom 16. Dezember 1985 (Stand 1. Januar 2016)
- Planungs- und Baugesetz des Kantons Zürich (PBG SR 700.1) vom 7. September 1975 (Stand 1. Juli 2015)
- Raumplanungsverordnung (RPV, SR 700.1) vom 28. Juni 2000 (Stand 1. Januar 2016)
- Verordnung über den Hochwasserschutz und die Wasserbaupolizei des Kantons Zürich (HWSchV, SR 724.112) vom 14. Oktober 1992 (Stand 1. August 2013).
- Verordnung über den Schutz vor nichtionisierender Strahlung (NISV, SR 814.710) vom 23. Dezember 1999 (Stand 1. Juli 2012)
- Verordnung über den Schutz vor Störfällen (Störfallverordnung, StFV, SR 814.012) vom 27. Februar 1991 (Stand 1. Juni 2015)
- Verordnung über den Verkehr mit Abfällen (VeVA, SR 814.610) vom 22. Juni 2005 (Stand am 1. Januar 2016)
- Verordnung über die Belastungen des Bodens (VBBo, SR 814.12) von 1. Juli 1998 (Stand 1. Januar 2016)

- Verordnung über die Pärke von nationaler Bedeutung (Pärkeverordnung, PäV, SR 451.36) vom 7. November 2007 (Stand 1. September 2014)
- Verordnung über die Sanierung von belasteten Standorten (Altlastenverordnung, AltlV, SR 814.680) vom 26. August 1998 (Stand 1. Januar 2016)
- Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA, SR 814.600, vormals Technische Verordnung über Abfälle TVA) vom 4. Dezember 2015 (Stand 1. Januar 2016)
- Verordnung über Sicherheitsvorschriften für Rohrleitungsanlagen (RLSV, SR 746.12) vom 4. April 2007 (Stand 1. Juli 2008)

1 Einleitung und Zielsetzung

In der Etappe 3 des Sachplans geologische Tiefenlager (SGT-E3) ist vorgesehen, die verbleibenden Standortgebiete mit geowissenschaftlichen Methoden detaillierter zu untersuchen. Ziel dieser Untersuchungen ist die Erhebung einer hinreichenden Datenbasis für den Vorschlag jeweils eines Standortgebiets pro Lagertyp (schwach- und mittelaktive Abfälle SMA und hochaktive Abfälle HAA) für ein Rahmenbewilligungsgesuch (die Option Kombilager¹ wird beibehalten). Diese Daten müssen eine verlässliche Basis für die Standortwahl sowie für die Beurteilung der Sicherheit und technischen Machbarkeit eines Tiefenlagers im Rahmenbewilligungsgesuch (RBG) bilden.

In SGT-E1 wurden sechs geologische Standortgebiete für das SMA-Lager und drei geologische Standortgebiete für das HAA-Lager vorgeschlagen. Die drei HAA-Standortgebiete sind gleichzeitig auch SMA-Standortgebiete. Diese Auswahl wurde durch den Bundesrat im November 2011 bestätigt. In SGT-E2 sind diese Gebiete weiter untersucht worden.

Für SGT-E3 wurden die Standortgebiete Jura Ost (JO) und Zürich Nordost (ZNO) von der Nagra zur vertieften Untersuchung vorgeschlagen (Nagra 2014a)². Für diese beiden Standortgebiete wurde ein Konzept für die Standortuntersuchungen erarbeitet, welches gewährleistet, dass eine ausreichende Datengrundlage für die Standortwahl und für die Rahmenbewilligungsgesuche für die Tiefenlager SMA und HAA zur Verfügung steht (Nagra 2014c). Darin werden in Grundzügen die geplanten Standortuntersuchungen in SGT-E3 beschrieben, unter Berücksichtigung der vorliegenden Untersuchungsdaten. Die Hinweise für die Standortuntersuchungen aus dem "Sicherheitstechnischen Vergleich" in SGT-E2 (Nagra 2014a) wurden dabei berücksichtigt.

In Nagra (2014c) wurden Bohrlokationen durch ausgewiesene Bohrperimeter nur grob bezeichnet. Mit dem vorliegenden **Gesuch für die Sondierbohrungen Rheinau** wird eine Bohrlokation im Standortgebiet ZNO parzellengenau festgelegt. Für diese parzellengenaue Festlegung wurden sowohl die Bedingungen an der Oberfläche als auch die Aspekte des Umweltschutzes, des Natur- und Heimatschutzes sowie der Raumplanung berücksichtigt.

Das Sondiergesuch enthält zudem ein umhüllendes Untersuchungsprogramm und beschreibt die zu erwartenden Auswirkungen der Untersuchungen auf die Umwelt am Bohrstandort. Die genauen Bohrungen und die in den einzelnen Abschnitten der Bohrungen vorzunehmenden Untersuchungen werden im Verlauf von SGT-E3 in separaten Arbeitsprogrammen für jeden Bohrstandort einzeln definiert, um flexibel auf die im Verlauf der Untersuchung der Standorte neu gewonnenen Erkenntnisse reagieren zu können. So können die Erkenntnisse der 3D-Seismik und – soweit vorhanden – bereits die Ergebnisse vorangegangener Bohrungen bei der Festlegung der Arbeitsprogramme der Bohrungen genutzt werden. Die einzelnen Arbeitsprogramme werden dem Eidgenössischen Nuklearsicherheitsinspektorat (ENSI) rechtzeitig vor der Ausführung zur Freigabe vorgelegt.

Mit dem Begriff Kombilager wird das Konzept beschrieben, bei dem das HAA- und das SMA-Lager beide am gleichen Standort, die Lagerkammern und die Lagerfelder zwar räumlich getrennt, aber in der gleichen Wirtgesteinsschicht angeordnet werden.

Um für alle Fälle gerüstet zu sein und weitere zeitliche Verzögerungen zu vermeiden, plant die Nagra bereits im Herbst 2016 3D-seismische Messungen im geologischen Standortgebiet Nördlich Lägern (NL) auszuführen und im Winter 2016/17 Sondiergesuche einzureichen. Das Explorationskonzept sowie die UVP-Voruntersuchungen für das Gebiet Nördlich Lägern wurden am 13. April 2016 beim Bundesamt für Energie (BFE) eingereicht. Das Untersuchungsprogramm Nördlich Lägern hat einen vergleichbaren Umfang wie die Untersuchungsprogramme Jura Ost und Zürich Nordost (vgl. Nagra-Medienmitteilung vom 16. Dezember 2015 sowie Nagra-Jahresmediengespräch am 14. April 2016).

Zweck der erdwissenschaftlichen Untersuchungen am Standort der Sondierbohrungen Rheinau ist die Erkundung des Untergrunds im Standortgebiet ZNO im Hinblick auf ein mögliches Tiefenlager für radioaktive Abfälle. Das Untersuchungsprogramm in Kapitel 3, welches Bestandteil des Sondiergesuchs ist, richtet sich nach dieser Zielsetzung. Vom gleichen Bohrplatz können unter Umständen mehrere Tiefbohrungen³ in unterschiedliche Tiefen und in unterschiedliche Richtungen abgeteuft werden (vgl. Fig. 7.1).

Die in diesem Gesuch beantragten Untersuchungen dienen sowohl der Eichung der seismischen Messungen als auch der geologisch-hydrogeologischen Erkundung des Opalinustons und der angrenzenden Gesteinsschichten hinsichtlich einer vertieften sicherheits- und bautechnischen Beurteilung eines allfälligen Tiefenlagers.

In Kapitel 2 wird der geologische Rahmen des Standortgebiets beschrieben.

Im nachfolgenden Kapitel 3 wird ein umhüllendes Untersuchungsprogramm vorgestellt, um die Zielsetzungen, die sich aus dem Konzept der Standortuntersuchungen für SGT-E3 (Nagra 2014c) ergeben, zu erreichen.

Kapitel 4 erläutert die rechtlichen Voraussetzungen für die Bewilligung des Bohrplatzes sowie der entsprechenden Sondierbohrungen.

In Kapitel 5 sind die technischen Gesuchsunterlagen für die Errichtung und den Betrieb des Bohrplatzes zusammengestellt. Darin werden die folgenden Voraussetzungen erläutert:

- a) Erstellen und Betreiben eines Bohrplatzes und -kellers sowie eines Installationsplatzes mit Parkplätzen inklusive der dazugehörigen Erschliessung
- b) Aufstellen und Betreiben des ca. 15 bis 30 m hohen Bohrgeräts mit Nebenanlagen sowie von Büro- und Arbeitscontainern
- c) Abteufen einer oder mehrerer Bohrungen von diesem Bohrplatz aus
- d) Rückbau des Bohrplatzes und Rekultivierung sowie gegebenenfalls die Installation von Langzeitbeobachtungssystemen (LZB) in den Bohrungen mit den dafür nötigen Messgeräten und den langfristigen Betrieb der Messeinrichtungen im Bohrkeller

In Kapitel 6 wird ausgeführt, welche Kriterien zur Auswahl des Bohrplatzes führen. Dazu werden in erster Linie geologische Kriterien hinzugezogen, wobei auch eine Interessenabwägung auf Basis der Umwelt- und Raumplanungsgesetzgebung für die Wahl des Bohrplatzes durchgeführt wurde. Die Interessenabwägung erfolgt mit Hilfe von räumlichen Ausschlusskriterien und einer qualitativen Beurteilung der Restflächen, welche mit Hilfe eines Geoinformationssystems (GIS) visualisiert werden. Die durch die Erstellung und den Betrieb des Bohrplatzes erwarteten Auswirkungen auf die Umwelt mit allfälligen Massnahmen zur Minimierung werden ebenfalls in diesem Kapitel beschrieben.

Kapitel 7 beschreibt die Auswirkungen der Sondierbohrungen auf den tieferen Untergrund gemäss Art. 58 lit. c Kernenergieverordnung (KEV) im Hinblick auf das später zu errichtende geologische Tiefenlager.

Tiefbohrungen sind Sondierbohrungen im Sinne von Art. 35 Abs. 2 lit. a KEG, welche für erdwissenschaftliche Untersuchungen im geologischen Standortgebiet abgeteuft werden. In diesem Gesuch werden die Begriffe synonym verwendet.

Kapitel 8 enthält die eigentlichen Gesuchsanträge unter Erwähnung der Bewilligungsvoraussetzungen sowie die notwendige Beurteilung der Eignung und der Interessenabwägung gemäss Art. 35 Abs. 2 lit. b Kernenergiegesetz (KEG).

2 Geologischer Bericht (nach Art. 60 KEV)

2.1 Überblick zur Datenlage

Das geologische Standortgebiet Zürich Nordost (ZNO) mit dem Wirtgestein Opalinuston hat eine Fläche von ca. 50 km² (SMA- und HAA-Lager; Nagra 2008). Da dieses Gebiet im Rahmen der Untersuchungen zum Entsorgungsnachweis (Nagra 2002a) bereits detailliert untersucht wurde, ist die lokale geologische Situation vergleichsweise gut bekannt. Neben engständigen 2D-Seismikdaten ist ein Grossteil des Gebiets bereits mit 3D-Seismikdaten abgedeckt. Ausserdem liegt mit der Sondierbohrung Benken eine detailliert ausgewertete Bohrung im zentralen Bereich des Gebiets vor (vgl. Beilage 1 und 2; Nagra 2001, Jäggi & Frieg 2010).

2D-Seismikdaten wurden im Bereich des Standortgebiets ZNO für die Suche nach Kohlen-wasserstoffen bereits in den späten 70er und 80er Jahren aufgenommen. Die Nagra führte 1991/92 eine 2D-Seismikkampagne durch. Die damals erhobenen Daten wurden in SGT-E2 einer umfangreichen Reprozessierung unterzogen (Rybarczyk 2012), durch welche die Interpretierbarkeit der Daten lokal weiter verbessert wurde (Madritsch et al. 2013, Meier et al. 2014, Rybarczyk 2013 und 2014). Im Rahmen der Untersuchungen für den Entsorgungsnachweis wurde 1996/97 eine ca. 50 km² umfassende und hochauflösende 3D-Seismikkampagne durchgeführt, welche nahezu das gesamte Standortgebiet abdeckt. Die Ergebnisse dieser Messkampagne sind im Bericht von Birkhäuser et al. (2001) im Detail dokumentiert.

Die Tiefbohrung Benken, welche im zentralen Bereich des Standortgebiets liegt, wurde ebenfalls im Rahmen der Untersuchungen zum Entsorgungsnachweis abgeteuft (Nagra 2001). Das prioritäre Wirtgestein Opalinuston sowie der potenziell einschlusswirksame Gebirgsbereich wurden vollständig gekernt. Unterhalb der mesozoischen Schichtfolge wurde kristallines Grundgebirge erbohrt. Die geologischen Erkenntnisse aus der Bohrung sind in Nagra (2001) dokumentiert. Ungefähr 11 km südwestlich des Standortgebiets ZNO liegt eine weitere, sehr gut dokumentierte Tiefbohrung (Sondierbohrung Weiach; Nagra 1989, Matter et al. 1988). Ca. 10 km weiter östlich befindet sich zudem die im Jahr 2010 abgeteufte Geothermiebohrung Schlattingen SLA-1 (Albert et al. 2012a), in welcher Bohrkerne des bevorzugten Wirtgesteins Opalinuston sowie nahezu des gesamten potenziell einschlusswirksamen Gebirgsbereichs (vgl. Kap. 2.3) gewonnen wurden. Nördlich des Standortgebiets gibt es weitere Informationen zur Schichtfolge aus untiefen Bohrungen (z.B. EWS-Bohrungen Hemmental-1 und -2, Löhningen sowie Osterfingen; vgl. Albert et al. 2012b, Bläsi et al. 2014, Naef & Deplazes 2016).

Im Standortgebiet ZNO liegen detaillierte geologische Karten (Hofmann 1967 und 1981, Hübscher 1961) vor. Innerhalb des Standortgebiets und der näheren Umgebung sind mesozoische Sedimente praktisch nicht aufgeschlossen und beschränken sich hauptsächlich auf die Umgebung von Schaffhausen. In letzterem Gebiet wurden detaillierte strukturgeologische Aufschlussbearbeitungen durchgeführt (Madritsch & Hammer 2012).

2.2 Referenzberichte

Die wichtigsten Referenzberichte sind in Tab. 2.1 zusammengestellt. Für weiterführende Referenzen wird ausserdem auf den jüngsten geologischen Synthesebericht der Nagra (2014b) verwiesen.

Tab. 2.1: Überblick über die wichtigsten Nagra-Referenzberichte zur Geologie des Standortgebiets Zürich Nordost.

Thema / Inhalt	Zitat	Titel	
Genereller Überblick zum Standortgebiet	Nagra 2008	Nagra (2008): Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager – Geologische Grundlagen. Nagra Tech. Ber. NTB 08-04.	
(Stand SGT-E1 und -E2)	Nagra 2014b	Nagra (2014b): SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage – Geologische Grundlagen. Dossiers I bis VII. Nagra Tech. Ber. NTB 14-02.	
Ergebnisse Sondierbohrung Benken	Nagra 2001	Nagra (2001): Sondierbohrung Benken – Untersuchungsbericht. Nagra Tech. Ber. NTB 00-01.	
Entsorgungs- nachweis	Nagra 2002a	Nagra (2002a): Projekt Opalinuston: Synthese der geowissenschaftlichen Untersuchungsergebnisse – Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Nagra Tech. Ber. NTB 02-03.	
3D-Seismik- interpretation	Birkhäuser et al. 2001	Birkhäuser, Ph., Roth, Ph., Meier, B.P. & Naef, H. (2001): 3D-Seismik: Räumliche Erkundung der mesozoischen Sedimentschichten im Zürcher Weinland. Nagra Tech. Ber. NTB 00-03.	
Oberflächen- geologie	Hofmann 1967, 1981	Hofmann, F. (1967): Geologischer Atlas der Schweiz 1:25'000, Blatt 1052 Andelfingen, mit Erläuterungen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).	
		Hofmann, F. (1981): Geologischer Atlas der Schweiz 1:25'000, Blatt 1031 Neunkirch, mit Erläuterungen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).	
	Hübscher 1961	Hübscher, J. (1961): Geologischer Atlas der Schweiz 1:25'000, Blatt 1032 Diessenhofen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).	
Stratigraphie, Referenzprofile	Naef & Deplazes 2016	Naef, H. & Deplazes, G. (2016): Stratigraphische Korrelation der Standortgebiete in der Nordschweiz: Grundlagen zu den Profildarstellungen im NTB 14-02, Dossier II. Nagra Arbeitsber. NAB 15-44.	
Strukturgeo- logie, Trenn- flächensysteme in Oberflächen- aufschlüssen	Madritsch & Hammer 2012	Madritsch, H. & Hammer, P. (2012): Characterisation of Cenozoic brittle deformation of potential geological siting regions for radioactive waste repositories in Northern Switzerland based on structural geological analysis of field outcrops. Nagra Arbeitsber. NAB 12-41.	
Geologische Profilschnitte	Jordan et al. 2015	Jordan, P., Malz, A., Heuberger, S., Pietsch, J., Kley. J. & Madritsch, H. (2015): Regionale geologische Profilschnitte durch die Nordschweiz und 2D-Bilanzierung der Fernschubdeformation im östlichen Faltenjura: Arbeitsbericht zu SGT-Etappe 2. Nagra Arbeitsber. NAB 14-105.	

2.3 Geologische Schichtfolge und potenziell einschlusswirksamer Gebirgsbereich im Standortgebiet

Die wichtigsten geologisch-stratigraphischen und hydrogeologischen Merkmale der Gesteinsabfolge im Standortgebiet Zürich Nordost sind in Fig. 2.1 zusammenfassend dargestellt (nach Nagra 2014b, Dossier II, Naef & Deplazes 2016). Das Wirtgestein für das HAA- und das SMA-Lager im Standortgebiet ZNO bildet der Opalinuston (vgl. Nagra 2008, Nagra 2014a). Die günstigen hydrogeologischen Eigenschaften dieser Formation sind unter anderem durch Untersuchungen in der Tiefbohrung Benken (Nagra 2001, Jäggi & Frieg 2010) sowie in der etwas weiter entfernten Tiefbohrung Weiach (Matter et al. 1988, Nagra 1989) belegt. Der potenziell einschlusswirksame Gebirgsbereich für das Wirtgestein Opalinuston erstreckt sich im Standortgebiet ZNO vom Top der Lettenkohle⁴ (Asp-Member) bzw. von der Basis des Gipskeupers bis zum Top des Effingen-Members bzw. der Basis der Villigen-Formation (Nagra 2014b, Dossier II und Naef & Deplazes 2016). Die Tongesteinsabfolge 'Brauner Dogger' (Bläsi et al. 2013, Meier & Deplazes 2014), welche in SGT-E1 als potenzielles Wirtgestein für schwach- und mittelaktive Abfälle vorgeschlagen wurde, bildet einen Teil der oberen Rahmengesteine.

Innerhalb des Standortgebiets ZNO lagert der mesozoische Schichtstapel mit dem potenziell einschlusswirksamen Gebirgsbereich im zentralen Gebiet um die Sondierbohrung Benken (Nagra 2001) direkt dem kristallinen Grundgebirge auf. Im Norden und Süden des Gebiets werden Vorkommen von spätpaläozoischen Sedimenten vermutet (Naef & Madritsch 2014 mit darin enthaltenen Referenzen). Im gesamten Standortgebiet werden die mesozoischen Sedimente diskordant von neogenen klastischen Sedimenten des Nordschweizer Molassebeckens überlagert. Die Mächtigkeit der Molassesedimente nimmt dabei innerhalb des Standortgebiets graduell von Norden nach Süden zu. Der Grossteil des Standortgebiets ist von verschiedenen quartären Sedimenten bedeckt (an der Oberfläche v.a. Jung-Pleistozän, im Nordosten aber auch älteres Pleistozän; vgl. Hofmann 1967 und 1981, Graf 2009a und b). Die Mächtigkeit der quartären Sedimente variiert lokal stark (Pietsch & Jordan 2014).

Die Sondierbohrung Benken (Nagra 2001) stellt das wichtigste stratigraphische Referenzprofil für das Standortgebiet ZNO dar (Nagra 2014b, Dossier II, Naef & Deplazes 2016). Sie liegt mitten im Standortgebiet und durchteuft den gesamten potenziell einschlusswirksamen Gebirgsbereich. Erbohrt wurde das Quartär mit 68 m Mächtigkeit, gefolgt von Sedimenten der Unteren Süsswassermolasse bis zu einer Teufe von 192 m. An der Basis des Tertiärs wurde die 7 m mächtige 'Bohnerz'-Formation bzw. Siderolithikum angetroffen, welche die Sedimente des Mesozoikums diskordant überlagert. Letztere wurden in weiterer Folge bis in eine Teufe von 983 m erbohrt. Darunter folgt direkt das kristalline Grundgebirge. Permokarbonsedimente wurden nicht angetroffen.

Das Wirtgestein Opalinuston ist in der Sondierbohrung Benken 112 m mächtig. Hier gilt es zu erwähnen, dass die ursprünglich in Nagra (2001) als Murchisonae-Schichten in Opalinuston-Fazies beschriebenen Sedimente im Top des Opalinustons der Bohrung Benken aufgrund neuerer Untersuchungen auch stratigraphisch zum Opalinuston gezählt werden (Bläsi et al. 2013). Die Auswertung der 3D-Seismikdaten (vgl. Birkhäuser et al. 2001, Nagra 2014b, Dossier II) impliziert für das Standortgebiet eine Mächtigkeit von ca. 100 – 120 m. Etwas nördlich des Standortgebiets ZNO wurde der Opalinuston in der Bohrung Hemmental-2 mit einer Mächtigkeit von 126 m durchteuft (Bläsi et al. 2014).

Die Lettenkohle bzw. das Asp-Member befinden sich im Top Muschelkalk (vgl. Beilage 3).

Die unteren Rahmengesteine des Opalinustons bestehen aus Sedimenten des Gipskeupers bzw. der Bänkerjoch-Formation, des Oberen Mittelkeupers bzw. der Klettgau-Formation (vgl. Diskussion in Nagra 2014b, Dossier II) sowie des Lias bzw. der Staffelegg-Formation und sind in der Bohrung Benken ca. 155 m mächtig. Der Gansinger Dolomit bzw. das Gansingen-Member weist in dieser Region teilweise hohe Anteile an Anhydrit auf. 'Harte Bänke' können durch Sedimente der Stubensandstein-Formation bzw. des Seebi-Members gebildet werden. Deren Zusammensetzung variiert lateral. In der Bohrung Benken bestehen sie v.a. aus Dolomit und Sandstein. Daneben kann der Arietenkalk bzw. das Beggingen-Member eine 'harte Bank' bilden. Diese lässt sich zwischen den einzelnen Profilen rund um das Standortgebiet ZNO gut korrelieren (Nagra 2014b, Dossier II).

Die oberen Rahmengesteine des Opalinustons bilden die Sedimente der sogenannten Tongesteinsabfolge 'Brauner Dogger' sowie das im Bereich des Standortgebiets ZNO vergleichsweise geringmächtige Effingen-Member der Wildegg-Formation (vgl. Nagra 2014b, Dossier II und Nagra 2008). Die Tongesteinsabfolge 'Brauner Dogger' besteht mehrheitlich aus Mergeln und Tonsteinen. Im unteren und obersten Teil treten zwischen diesen tonmineralreicheren Ablagerungen ausserdem mikritische, (quarz-)sandige oder biodetritische Kalksteine und Eisenoolithe auf (Bläsi et al. 2013, Meier & Deplazes 2014). Einige dieser Horizonte, wie zum Beispiel der Subfurcaten-Oolith am Top der Humphriesioolith-Formation, lassen sich von der Bohrung Benken bis in das Randen-Gebiet verfolgen (Nagra 2014b, Dossier II). Andere dieser Horizonte sind in ihrer Zusammensetzung und Mächtigkeit lateral variabler. Die Parkinsoni-Württembergica-Schichten und die Variansmergel-Formation bilden in der Bohrung Benken ein tonigmergeliges Schichtpaket mit einer Mächtigkeit von 41 m (Bläsi et al. 2013). Das Effingen-Member (inklusive Birmenstorf-Member) ist in der Bohrung Benken 14 m mächtig und besteht v.a. aus Kalkmergeln und hier nur geringmächtigen Kalkbankabfolgen (Nagra 2001, Deplazes et al. 2013).

Über dem potenziell einschlusswirksamen Gebirgsbereich im Standortgebiet ZNO folgt zunächst die Villigen-Formation, die mehrheitlich aus Kalksteinen aufgebaut wird. Letztere werden von darüber folgenden jüngeren Malmkalken nur durch die ca. 15 m mächtigen Mergel der Schwarzbach-Formation unterbrochen. Diese obersten Anteile der mesozoischen Schichtabfolge sind nur nördlich des Standortgebiets an der Oberfläche aufgeschlossen. Sie werden von den tertiären, klastischen Sedimenten des Molassebeckens (insbesondere der Unteren Süsswassermolasse) überlagert. Die klastischen Sedimente des Molassebeckens sowie die quartären Sedimente nehmen nach Süden an Mächtigkeit zu. Wie bereits erwähnt variieren letztere lokal stark betreffend Alter und Mächtigkeit. Südlich des Standortgebiets verläuft eine quartäre Felsrinne dem Thurtal folgend von Osten nach Westen, welche nachweislich über 280 m in die Molassesedimente eingeschnitten ist. Weitere grob nach Nordwesten abzweigende Rinnen innerhalb des Standortgebiets scheinen mit dieser Rinne in Verbindung zu stehen, insbesondere die Rinne von Marthalen (vgl. Pietsch & Jordan 2014 und Nagra 2014c).

In Beilage 3 ist aufgrund der zuvor beschriebenen Datenlage ein Prognoseprofil für die Sondierbohrungen Rheinau beigefügt.

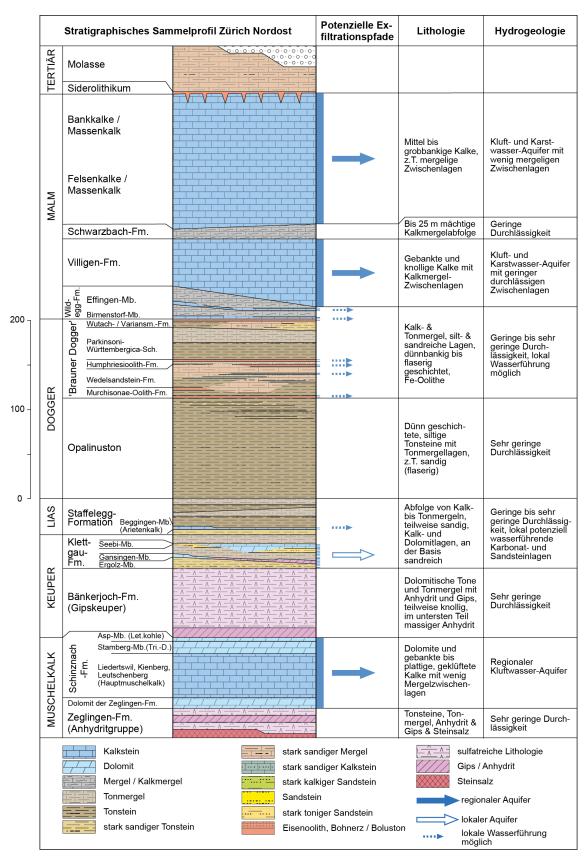


Fig. 2.1: Schematisches stratigraphisch-hydrogeologisches Sammelprofil für das Standortgebiet Zürich Nordost (nach Nagra 2014b, Dossier II).

2.4 Tektonik des Standortgebiets

Die lokalen strukturgeologisch-tektonischen Verhältnisse im Standortgebiet ZNO wurden bereits durch die 3D-Seismik OPA97 detailliert abgeklärt (Birkhäuser et al. 2001). Durch die flächendeckende 3D-Seismik ist in diesem geologischen Standortgebiet auch die Position und Ausdehnung von anordnungsbestimmenden tektonischen Elementen und kleineren Störungen bereits sehr gut bekannt. Die Randbereiche des geologischen Standortgebiets liegen zum Teil ausserhalb der 3D-Seismik-Gebiets; hier sind die Kenntnisse über die räumlichen und tektonischen Verhältnisse durch erst kürzlich reprozessierte 2D-Seismiklinien weiter verbessert worden

Das geologische Standortgebiet liegt aus tektonischer Sicht zum grössten Teil im Bereich des östlichen Tafeljuras bzw. des Nordschweizer Molassebeckens (Jordan et al. 2015). Nur der südwestlichste Teil des Standortgebiets, wo gemäss der Auswertung der 3D-Seismik von Birkhäuser et al. (2001) eine gewisse Überprägung von alpiner Fernschubtektonik erkennbar ist, wird noch der Vorfaltenzone zugewiesen (Müller et al. 2002). Die Schichten des Mesozoikums fallen generell mit wenigen Grad in Richtung Südosten ein und sind im Allgemeinen durch eine vergleichsweise geringe tektonische Beanspruchung charakterisiert.

Durch die Tiefbohrung Benken wurde belegt, dass der zentrale Bereich des Standortgebiets ZNO auf einer kristallinen Hochzone, dem sogenannten Benken-Horst liegt (Nagra 2001, Müller et al. 2002). Der südliche Teil des Standortgebiets hingegen liegt vermutlich bereits im Hangenden der Randzone des Nordschweizer Permokarbontrogs (Naef & Madritsch 2014 mit darin enthaltenen Referenzen). Im nördlichsten Teil des Standortgebiets ist bis jetzt nicht eindeutig belegt, ob unter dem Mesozoikum direkt das kristalline Grundgebirge oder Permokarbonvorkommen liegen (siehe Naef & Madritsch 2014).

Im eigentlichen Standortgebiet ZNO sind gemäss der Interpretation der 3D-Seismikdaten keine regionalen Störungszonen ausgebildet (Nagra 2014c). Unmittelbar östlich des Gebiets verläuft allerdings die über mehrere Zehnerkilometer verfolgbare, grob von Nordwesten nach Südosten verlaufende Neuhausen-Störung. Die Interpretation der 3D-Seismikdaten zeigt deutlich, dass die Neuhausen-Störung aus mehreren, en échelon angeordneten Teilästen besteht. Die von der Neuhausen-Störung abzweigende, Ost-West streichende Wildensbuch-Flexur wurde erst durch die 3D-Seismik OPA 97 voll erfasst (Birkhäuser et al. 2001). Die aus einer Reihe kleinerer, ebenfalls en échelon angeordneter Störungssegmente bestehende Struktur wird als anordnungsbestimmendes⁵ tektonisches Element eingestuft (Nagra 2014b, Dossier II).

Die über mehrere Kilometer verfolgbare Rafz-Marthalen-Flexur repräsentiert den Südrand des Kristallinhorsts von Benken und damit den Nordrand des Nordschweizer Permokarbontrogs, der post-paläozoisch mehrfach reaktiviert wurde (Birkhäuser et al. 2001, Ringgenberg 2001, Marchant et al. 2005). In SGT-E2 wurde diese Flexurzone als zu meidende tektonische Zone ausgewiesen (Nagra 2014b, Dossier II). Gründe für diese Einstufung sind einerseits Modellvorstellungen zur Geodynamik, die eine mögliche zukünftige Reaktivierung der Trograndstörungen in Betracht ziehen sowie die Ergebnisse der 3D-Seismik OPA97, die anhand von Attribut-Analysen eine vergleichsweise starke tektonische Überprägung dieser Zone im Bereich des Deckgebirges und auch des Wirtgesteins Opalinuston ergaben. Die Rafz-Marthalen-Flexur markiert ausserdem die Nordgrenze des seismisch kartierbaren Einflussbereichs der alpinen Fernschubtektonik. Unklarer ist die tektonische Bedeutung der in der 3D-Seismik deutlich zum Ausdruck kommenden Strukturzone von Niderholz am Westrand des Standortgebiets (vgl. Birkhäuser et al. 2001). Die auffällige Grundgebirgsstruktur scheint aber gemäss dieser seismischen Daten-

Als anordnungsbestimmend werden jene tektonischen Elemente bezeichnet, welche die Anordnung der Lagerkammern eines Tiefenlagers beeinflussen.

auswertung nur einen vergleichsweise geringen strukturellen Einfluss auf den überlagernden Opalinuston zu haben, weshalb sie in SGT-E2 nicht als grundsätzlich zu meidende tektonische Zone ausgewiesen wurde (vgl. Nagra 2014b, Dossier II).

Die Auswertung der bestehenden 3D-Seismikdaten liefert für das Standortgebiet ZNO auch bereits detaillierte Informationen zur Lokation von kleinräumigen Störungen (Birkhäuser et al. 2001). Die Datenanalyse legt nahe, dass innerhalb der 3D-Seismikgebiets alle kleinräumigen Störungen mit einem Vertikalversatz von > 7 m detektiert wurden.

Die mehrheitlich unzureichende Aufschlusssituation im Standortgebiet ZNO erlaubte nur in seinem nördlichsten Abschnitt bei Schaffhausen detaillierte strukturgeologische Aufnahmen (Madritsch & Hammer 2012). Diese Aufnahmen ergaben, dass zumindest im Nahbereich der Neuhausen-Störung, die in unmittelbarer Nähe zu den kartierten Aufschlüssen verläuft, mit komplexen kleinräumigen Trennflächen zu rechnen ist. Neben den auch anderswo in der Nordschweiz beobachtbaren subvertikalen und dominant von Nord nach Süd bis Nord-Nordost nach Süd-Südwest streichenden Trennflächen treten in diesem Gebiet auch vermehrt kleinräumige Abschiebungen mit unterschiedlicher Orientierung (von Nordwest nach Südost fallend und Nordost nach Südwest streichend) auf (vgl. Madritsch 2015). Da die Geländeaufnahme hauptsächlich in Malmkalk-Aufschlüssen erfolgte, bleibt allerdings ungewiss, inwieweit und ob überhaupt derart ausgebildete Trennflächen auch im Bereich des unterlagernden einschlusswirksamen Gebirgsbereichs auftreten.

Da das Standortgebiet ZNO gemäss der Auswertung seismischer Daten mehrheitlich ausserhalb des Einflussbereichs der alpinen Fernschubtektonik liegt, ist nicht davon auszugehen, dass der Opalinuston im Zuge derselben als Abscherhorizont aktiviert wurde. Vergleichsweise vage Hinweise auf eine derartige Deformation reduzieren sich auf den südlichsten Rand des 3D-Seismikperimeters (Birkhäuser et al. 2001).

Abschliessend gilt es festzuhalten, dass die Ungewissheiten betreffend der strukturgeologischen Verhältnisse im Standortgebiet ZNO vor allem aufgrund der bereits vorliegenden und ausgewerteten 3D-Seismikdaten (Birkhäuser et al. 2001) vergleichsweise gering sind. Sie betreffen vor allem den nordwestlichen Teil des Gebiets, wo noch keine 3D-Seismikdaten vorliegen sowie allgemein die Charakteristik sub-seismischer Strukturen im gesamten Gebiet.

2.5 Hydrogeologie und Hydrochemie

Die regionale und lokale Hydrogeologie wurde im Rahmen der Synthesen zu SGT-E2 detailliert dargestellt (Nagra 2014b, Dossiers V und VI). Von besonderer Bedeutung für das Standortgebiet ZNO sind die Untersuchungen in der im Zentrum des geologischen Standortgebiets gelegenen Sondierbohrung Benken (Nagra 2001) und die Synthesearbeiten im Rahmen des Entsorgungsnachweises (Nagra 2002a). Wichtige ergänzende Datensätze kommen insbesondere aus den Bohrungen Schlattingen SLA-1 und Weiach (Nagra 2014b, Dossier V).

Der folgende Abschnitt gibt einen Überblick über die hydrogeologischen Einheiten (vgl. Fig. 2.1). Detailliertere Informationen finden sich im Bericht zu den geologischen Grundlagen der SGT-E2 (Nagra 2014b, Dossier V) und der dort zitierten weiterführenden Literatur. Generell ist das Gebiet geprägt durch eine Abfolge von Aquiferen (Grundwasserleiter) und Aquitarden (Grundwasserstauer) mit einer stockwerkspezifischen Charakteristik der Grundwässer.

Die oberflächennahe Situation ist charakterisiert durch das Rhein- und das Thurtal inklusive der dort vorhandenen ergiebigen Lockergesteinsaquifere. Auch ausserhalb dieser Flusstäler existieren Lockergesteinsgrundwasserleiter, teilweise in Zusammenhang mit glazialen Rinnen.

Von Norden nach Süden nimmt die Mächtigkeit der Molasse zu; für die Wasserführung relevant sind insbesondere sandige Einschaltungen. Im rund 6 km südwestlich des geologischen Standortgebiets gelegenen Eglisau wurde während vielen Jahren aus der Unteren Süsswassermolasse ein Na-Cl-Wasser gefördert (z.B. Kempf et al. 1986).

Die Karbonate des Oberen Malms bilden einen in der Bohrung Benken potenziell 238 m mächtigen regionalen Kluft- und Karstaquifer. Ob die in Benken 11 m mächtige Schwarzbach-Formation (Mittlere Malmmergel) als Aquitard ausgebildet ist, lässt sich anhand der Daten dieser Bohrung nicht beurteilen. Bei Benken erwies sich der Obere Malm als mehrheitlich geringdurchlässig. Der Malm-Aquifer ist im Raum Neuhausen – Rheinfallbecken aufgeschlossen und findet sich gegen Süden unter zunehmend mächtigerer Molassebedeckung. Im oberflächennahen Bereich ist eine bedeutende offene, rezente Verkarstung zu erwarten. Zusätzlich ist im gesamten Gebiet von Paläokarst auszugehen, dieser scheint unter bedeutender Molassebedeckung gemäss bisheriger Beobachtungen weitgehend mit Boluston verfüllt zu sein. In der Bohrung Benken wurde der Malm-Aquifer in verschiedenen Intervallen getestet und wies hydraulische Durchlässigkeiten bis maximal 10⁻⁸ m/s auf (Transmissivität T: 2.1 × 10⁻⁶ m²/s); in der Geothermiebohrung Schlattingen SLA-1 waren die Durchlässigkeiten noch geringer. Aus der Bohrung Benken konnte ein sehr altes, modifiziertes Formationswasser marinen Ursprungs gefördert werden (Nagra 2001). Aus der westlich des Rheins gelegenen Bohrung Lottstetten-Nack fliesst ein thermales Na-HCO₃-Cl-Typ Grundwasser artesisch aus.

Von der Basis des Malm-Aquifers bis zum Keuper-Aquifer folgt ein rund 270 m mächtiges Schichtpaket, das sehr geringe Durchlässigkeiten aufweist. Die Wildegg-Formation ist in der Bohrung Benken praktisch undurchlässig (K-Wert 6 × 10⁻¹⁴ m/s, Nagra 2002a).

Der 'Braune Dogger' ist eine grösstenteils tonreiche Einheit mit eingeschalteten sandig-kalkigen Bänken und Eisenoolithen. Die hydraulischen Durchlässigkeiten in den Bohrungen Benken, Weiach und Schlattingen SLA-1 waren meist < 10⁻¹¹ m/s (Nagra 2014b, Dossier VI). In einem insbesondere die Wedelsandstein-Formation umfassenden Intervall wurde in Schlattingen SLA-1 eine hydraulische Durchlässigkeit von 10⁻⁹ m/s ermittelt und es konnte eine stark kontaminierte Grundwasserprobe gefördert werden (Nagra 2014b, Dossier V und Waber et al. 2014a).

Das Wirtgestein Opalinuston wurde in Benken in mehreren Intervallen getestet, die hydraulischen Durchlässigkeiten lagen bei $\leq 10^{-13}$ m/s. Diese sehr geringen hydraulischen Durchlässigkeiten belegen zusammen mit den beobachteten Tracerprofilen (Nagra 2002a, Gimmi & Waber 2004) ein durch Diffusion dominiertes Transportregime.

Im Liegenden des Opalinustons folgen weitere tonreiche, gering durchlässige Gesteine. In den Bohrungen Benken, Weiach, Riniken und Schafisheim wies der Lias (Staffelegg-Formation) K-Werte < 10⁻¹¹ m/s auf (Nagra 2001, Nagra 1989, Nagra 1990, Nagra 1992).

Der Keuper-Aquifer ist allgemein charakterisiert durch vergleichsweise kleinräumig wechselnde hydrogeologische Eigenschaften. Das porös ausgebildete Seebi-Member der Klettgau-Formation wies in der Bohrung Benken eine hydraulische Durchlässigkeit von 7×10^{-7} m/s und ein artesisches Potenzial auf. Es konnte eine Grundwasserprobe vom Na-SO₄-Cl-Typ gefördert werden, das während einer Interglazialzeit infiltrierte (Waber et al. 2014b).

⁶ Stubensandstein-Formation.

Unter dem Keuper-Aquifer folgt bis zum Muschelkalk-Aquifer wiederum ein mächtiger Aquitard mit sehr geringen Durchlässigkeiten, welcher insbesondere die Bänkerjoch-Formation umfasst.

Der Muschelkalk-Aquifer ist der regionale Tiefenaquifer unterhalb der Wirt- und Rahmengesteine. In der Bohrung Benken lag die hydraulische Durchlässigkeit im Bereich von 10⁻⁷ m/s. Es wurde eine Wasserprobe vom generellen Ca-SO₄-Typ gefördert mit einer kaltzeitlichen Isotopensignatur und einem ¹⁴C-Modellalter von 12'000 – 14'000 Jahren (Waber et al. 2014b). Bei der Geothermiebohrung Schlattingen SLA-1 östlich des Standortgebiets beträgt die mittlere hydraulische Durchlässigkeit im Oberen Muschelkalk ca. 1 × 10⁻⁶ bis 1 × 10⁻⁷ m/s. Es wurden dort aus dem Trigonodus-Dolomit zwei Wasserproben vom Ca-SO₄-Typ entnommen, die aber mit Bohrspülung und Injektionsfluiden kontaminiert sind. Das Grundwasser weist ebenfalls eine kaltzeitliche Isotopensignatur auf. Die vorhandene Kontamination erlaubt jedoch keine Aussagen bezüglich der Verweilzeit.

Im Mittleren und Unteren Muschelkalk folgt wiederum ein mächtiger, sehr gering durchlässiger Aquitard.

Der Buntsandstein (Dinkelberg-Formation) bildet dort, wo er direkt dem kristallinen Grundgebirge aufliegt, zusammen mit dem aufgelockerten obersten Kristallin einen regionalen Aquifer. Dort, wo er dem Permokarbon aufliegt, stellt er einen selbständigen geringmächtigen Aquifer dar. In der Bohrung Benken wurden im Buntsandstein mit 6×10^{-6} m/s die höchsten Durchlässigkeiten angetroffen (Nagra 2001); in der Bohrung Siblingen wurden gar K-Werte bis 2×10^{-4} m/s bestimmt (Nagra 2002a). Das in Benken geförderte Na-HCO₃-Cl-Typ Grundwasser weist ein 14 C-Modellalter von > 26'000 Jahren auf (Nagra 2001).

Die hydrogeologischen und hydrochemischen Verhältnisse im Kristallin und Permokarbon sind in früheren Nagra-Berichten detailliert dargestellt (z.B. Thury et al. 1994).

Gipskeuper.

3 Untersuchungsprogramm (nach Art. 59 KEV)

3.1 Zielsetzung der Standortuntersuchungen (nach Art. 59a KEV)

Die übergeordnete Zielsetzung für die Standortuntersuchungen in SGT-E3 ist die Beschaffung einer belastbaren Datengrundlage in folgenden Kategorien:

- Auswahl je eines Standortgebiets pro Lagertyp für die Vorbereitung des Rahmenbewilligungsgesuchs (RBG) mit einer entsprechenden Begründung
- Nachweis der Eignung der gewählten Standortgebiete nach den Kriterien der Langzeitsicherheit sowie der technischen Machbarkeit in den Rahmenbewilligungsgesuchen
- Abgrenzung der untertägigen Lagerbereiche⁸ für das RBG
- Anordnung und Auslegung der Anlage in ihren Grundzügen, darunter auch weitere Arbeiten in Bezug auf die Vorbereitung des Baus der Zugänge
- Beschreibung des Ist-Zustands vor Baubeginn (hydrogeologische Parameter, natürliche Umweltradioaktivität etc.)

Die hierfür zu erhebenden Daten lassen sich drei Gruppen zuordnen: Geometrie, Eigenschaften und Zustandsparameter.

Die Geometrie des Untergrunds, insbesondere der Verlauf der Grenzen der geologischen Formationen, bildet die Basis für das Schichtmodell der sicherheitstechnischen Rechnungen und der Anlagenplanung im Untergrund. Hierzu gehört auch die Verteilung der tektonischen Störungen im untersuchten Bereich. In Fig. 2.1 wird das schematische geologische Prognoseprofil für das Standortgebiet Zürich Nordost gezeigt. Es ist eine Kompilation auf der Basis der Nagra-Bohrungsdatenbank. Je nach Ansatzpunkt im Standortgebiet ZNO fallen gegebenenfalls bereits erodierte Schichten im Hangenden weg. In Beilage 3 ist das Prognoseprofil für den Sondierstandort Rheinau beigefügt, welches auch eine Grundlage für das später zu erstellende konkrete Arbeitsprogramm ist.

Weiterhin sind die Eigenschaften der geologischen Einheiten zu untersuchen. Hierbei liegt der Fokus auf den Parametern, die für die Langzeitsicherheit und technische Machbarkeit entscheidend sind. Als Beispiel können die Transporteigenschaften für Radionuklide oder die Transmissivität resp. die hydraulische Durchlässigkeit genannt werden (vgl. Kap. 7.1). Schliesslich sind Zustandsparameter wie Spannungsrichtung und -magnitude, Temperatur und Porenwasserdruck zu erheben.

Generell sind die Ausdehnung der zu untersuchenden Bereiche im Wirtgestein sowie den Rahmengesteinen und die zu erwartende Variabilität der geologischen Eigenschaften und Zustandsbedingungen zu berücksichtigen, um anschliessend den belastbaren Nachweis der technischen Machbarkeit und Langzeitsicherheit zu führen.

3.2 Generelles Untersuchungs- und Bohrkonzept

Zur Charakterisierung der Eigenschaften der geologischen Barriere und zur Eichung der Seismik werden Tiefbohrungen eingesetzt (Nagra 2014c). Diese Tiefbohrungen erkunden den Untergrund entlang von Bohrpfaden. Die Bohrpfade können vertikal, geneigt resp. schräg oder

Die potenziellen untertägigen Lagerbereiche für das SMA- und das HAA-Lager liegen innerhalb der in SGT-E2 definierten Lagerperimeter (vgl. Nagra 2014b und c).

bei abgelenkten Bohrungen auch nahezu jeden beliebigen Winkel einnehmen. In den Bohrungen werden verschiedenste Messungen zu Eigenschaften und Zustandsbedingungen im Untergrund durchgeführt.

Mit Hilfe der Kernbohrtechnik können intakte Gesteinsproben oder auch allenfalls tektonisch überprägtes Kernmaterial aus der Tiefe gewonnen werden. Das Kernmaterial dient der Bestimmung der Eigenschaften und/oder Störungsgeometrien. Subhorizontale oder mässig steil einfallende Störungen können mit vertikalen Kernbohrungen erfasst und sicher durchteuft werden. Um aber steil einfallende oder vertikale Störungen zu identifizieren und deren Eigenschaften zu untersuchen, sind in der Regel Schrägbohrungen oder abgelenkte Bohrungen erforderlich.

Die Tiefbohrungen mit ihren Bohrpfaden werden so angeordnet, dass sie die standortbezogenen Untersuchungsziele gemäss dem Explorationskonzept erreichen (Nagra 2014c). Die Reihenfolge der einzelnen Sondierbohrungen wird in Abhängigkeit von ihrer Relevanz und der erwarteten Aussagekraft der geplanten Untersuchungen festgelegt. Da normalerweise ein Sicherheitsabstand um die Bohrungen und den Bohrpfad eingehalten werden muss, werden sie von vornherein so platziert, dass sie das Platzangebot in den Lagerperimetern nicht wesentlich einschränken (vgl. Kap. 6.2.1 und Fig. 7.1).

Angepasst an die Geologie des Standorts und in Abhängigkeit von den letztendlich durchzuführenden Untersuchungen in den Sondierbohrungen, die im Arbeitsprogramm definiert werden, wird ein Bohr- und Verrohrungskonzept aufgestellt. Dieses wird sich nicht grundsätzlich von den aus den vertikalen Tiefbohrungen der Nagra in der Nordschweiz bereits bekannten und erfolgreich umgesetzten Konzepten (Nagra 1985, Nagra 1986a – e und Gassler & Macek 1994) unterscheiden, mit denen man das kristalline Grundgebirge bis zu einer Maximalteufe von 2'482.2 m u.T. (z.B. Weiach) aufgeschlossen hat. Im Rahmen der Untersuchungen am Wellenberg konnte die Nagra sieben sowohl vertikale als auch geneigte Bohrungen in tektonisch überprägten Sedimentgesteinen erfolgreich bis auf eine maximale Endteufe von 1'670.3 m u.T. (WLB-SB1; Gassler & Karsch 1996) niederbringen. Dass eine Sondierbohrung durch das Wirtgestein Opalinuston bis an die Basis des Mesozoikums mit den entsprechend umfangreichen Testarbeiten erfolgreich abgeteuft werden kann, hat die Sondierbohrung Benken gezeigt (Macek & Gassler 2001). Bei weiteren Bohrungen in Sedimentgesteinen mit mittleren Teufen, z.B. Bohrung Oftringen mit 719 m u.T. (Frieg et al. 2008), wurden ebenfalls alle gesetzten Untersuchungsziele erreicht. In jüngerer Vergangenheit hat sich das bewährte Konzept der Nagra beim Abteufen der Geothermiebohrung Schlattingen SLA-1 nochmals bestätigt (Sperber & Frieg 2015).

Das Bohrlochdesign – d.h. die Planung des Bohr- und Verrohrungsschemas – legt die Anzahl der Verrohrungen fest, die eingebaut werden müssen. Die Festlegung, wo Verrohrungen vorzusehen sind, hängt primär von der Geologie ab und erfolgt unter Berücksichtigung der angetroffenen geologischen Verhältnisse vor Ort. Der abschnittweise Einbau von Rohren dient allgemein den folgenden Zielen:

- Schutz des Grundwassers
- Sicherung bereits erbohrter Abschnitte (z.B. in instabilen Formationen)
- Trennung von Abschnitten/Formationen mit unterschiedlichem Druck/Druckgradienten und/oder unterschiedlichen Fluiden (z.B. Salinität)
- Abdichtung des Bohrlochs gegen unerwünschte Zuflüsse aus dem Gebirge (Gas, Öl, Wasser)
- Vermeidung unerwünschter Abflüsse (Verluste) der Bohrspülung aus dem Bohrloch in das Gebirge

Die Grösse resp. der Durchmesser der Verrohrungen wird vornehmlich durch technisch-wirtschaftliche Aspekte bestimmt. Bei den geplanten Sondierbohrungen der Nagra ist jedoch entscheidend, ob die geplanten wissenschaftlich-technischen Untersuchungen ausgeführt werden können und geeignetes Probenmaterial in ausreichender Qualität gewonnen werden kann.

Die tieferen Teile der Bohrungen werden nach Abschluss der Untersuchungen im offenen Bohrloch nach dem Stand der Technik so verrohrt und zementiert, dass die unterschiedlichen Grundwasserstockwerke getrennt bleiben. Die Zementationen werden im Rahmen von geophysikalischen Messungen auf ihre Qualität geprüft, um eine dauerhafte Trennung der Aquifere sicherzustellen.

Zudem ist zu berücksichtigen, dass später nach Abschluss der eigentlichen Bohrarbeiten, gegebenenfalls ein Langzeitbeobachtungssystem zur Beobachtung der hydraulischen Formationsdrücke und Gewinnung von Wasserproben in die Bohrungen sicher eingebaut werden kann. Ausserdem ist zu gewährleisten, dass nach einer Langzeitbeobachtungsphase, die über mehrere Dekaden andauern kann, das Langzeitbeobachtungsmesssystem auch wieder sicher ausgebaut und anschliessend eine Verfüllung bzw. Versiegelung des Bohrlochs vorgenommen werden kann. Wie die Erfahrung gezeigt hat, ist gerade hierfür ein ausreichend grosser Bohrlochdurchmesser, der es ermöglicht, robuste Standard-Bohrwerkzeuge aus dem Öl- und Gasgeschäft einzusetzen, unerlässlich.

Das endgültige Bohrkonzept muss die sich aus dem Arbeitsprogramm inklusive einer Gefahrenund Risikoanalyse ergebenden Anforderungen abdecken und gleichzeitig genügend Flexibilität aufweisen, um auf die unterschiedlichsten Bohrlochsituationen angemessen reagieren zu können, damit die Zielsetzungen aus dem Explorationskonzept (Nagra 2014c) erreicht werden können.

Die Nagra hat aufgrund ihrer langjährigen Erfahrungen speziell auch in der Nordschweiz gezeigt, dass sie kein Bohrloch aufgrund technischer Schwierigkeiten aufgeben musste und ihre Untersuchungsziele sicher erreicht hat, ohne dass es zu relevanten Personen- und Sachschäden gekommen ist.

3.3 Vorgesehene Untersuchungen (nach Art. 59b KEV)

Die erste Sondierbohrung auf dem Bohrplatz in Rheinau ist zum jetzigen Zeitpunkt als Vertikalbohrung bis ca. 50 m unter die Basis des Mesozoikums vorgesehen. Es wird gemäss Prognoseprofil mit einer Endteufe von ca. 1'000 m u.T. gerechnet (vgl. Beilage 3). Mit Hilfe einer Meisselbohrung soll das Standrohr (z.B. 13¾ Zoll resp. ca. 33.5 cm oder evtl. sogar grösser) in den anstehenden standfesten Fels gesetzt und einzementiert werden. Anschliessend ist vorgesehen, die Bohrung als Kernbohrung bis zur Endteufe auszuführen. Unter Umständen ist es denkbar, die Bohrung auch teilweise destruktiv abzuteufen, z.B. wenn gegen Ende der Bohrung nur noch wenige Zusatzinformationen zum Erreichen der Zielsetzungen erforderlich sind und keine Bohrkerne mehr benötigt werden. Um mit einem Durchmesser von ca. 6¼ Zoll (resp. ca. 15.6 cm) die Endteufe zu erreichen, ist vorgesehen, sukzessive weitere Verrohrungen in die Bohrung mit zunehmender Teufe einzubauen und zu zementieren. In bestimmten Bohrlochabschnitten können auch offene Bohrlochstrecken vorkommen.

Unter Umständen werden in Abhängigkeit von den Ergebnissen der ersten Bohrung und der weiteren Untersuchungen im Standortgebiet weitere Bohrungen vom Bohrplatz Rheinau abgeteuft. Diese werden voraussichtlich bereits von der Oberfläche aus geneigt ausgeführt, mit einer maximalen Abweichung gegenüber der Senkrechten von ca. 45°. Als Alternative könnten auch aus der Senkrechten abgelenkte Bohrungen ausgeführt werden. In diesem Fall würde ebenfalls, wie bei der ersten Bohrung, ein vertikales Standrohr gesetzt.

Die im Spezifischen durchzuführenden Untersuchungen, insbesondere die gewählten Bohrrichtungen und -tiefen sowie die für jeden Bohrlochabschnitt einzusetzenden Untersuchungs- und Testmethoden werden in einem gesonderten Arbeitsprogramm festgelegt. Im Rahmen eines Freigabeverfahrens findet eine Prüfung durch die Aufsichtsbehörden statt.

3.3.1 Geologie

Die Arbeiten in Zusammenhang mit der geologischen Bohrungsaufnahme und Dokumentation lassen sich in die folgenden drei Bereiche unterteilen:

- Geologischer Samplerdienst
- Bohrstellengeologie
- Laboranalysen

Während der eigentlichen Bohrarbeiten, d.h. bei Teufengewinn, wird ein Sampler-Team diejenigen Arbeiten am Bohrklein bzw. am Bohrkern durchführen, die für die tägliche stratigraphischlithologische Charakterisierung des Bohrprofils sowie für die Datensicherung notwendig sind. Zudem werden für sicherheitstechnische und wissenschaftliche Belange kontinuierliche Bohrgasmessungen durchgeführt sowie die für spätere Interpretationen notwendigen Parameter und Vorkommnisse registriert (Bohrungschronologie). Folgende Aufgaben werden durch den Samplerdienst wahrgenommen:

- Entnahme von Bohrklein (Cuttings)
- Kernbearbeitung, -vermessung und -metrierung sowie Erstellung der Kernbilanz und Bestimmung des Rock Quality Designation Indexes (RQD-Wert)
- Lithologische Beschreibung des Bohrkleins und der Bohrkerne
- Stratigraphische Ansprache der Gesteinsproben
- Fotographieren der Gesteinsproben und Bereitstellung zur Archivierung
- Bereitstellung von Probenmaterial für Laboranalysen

Ein sogenanntes Sampler-Log wird vom Sampler-Team auf der Bohrstelle mittels spezieller EDV-Programme erstellt, welches die folgenden Angaben umfasst:

- Geologisches Übersichtsprofil (lithostratigraphische Bohrklein- bzw. Bohrkernbeschreibung)
- Bohrgasmessungen
- Bohrtechnische Daten
- Spülungsdaten und Spülungsbilanz

Alle erfassten Daten werden zur Datenarchivierung digital abgespeichert.

Die Bohrstellengeologie ist dafür verantwortlich, die strukturgeologische Bohrkernaufnahme und eine möglichst lückenlose Kernabwicklung mit einem Kernscanner sowie eine strukturgeologische Auswertung der bohrlochgeophysikalischen Strukturmessungen (z.B. Sonic Televiewer, Formation Micro Scanner oder vergleichbare Methoden) vorzunehmen. Die Bohrstellengeologie stellt Angaben über das Einfallen von Schichtung, Schieferung und Trennflächen sowie deren Klassifizierung, Füllungsgrad und Füllungsmaterial der Diskontinuitäten sowie den Tektonisierungsgrad der duktilen und spröden Deformation für das Geologie-Log bereit.

Bei den durchzuführenden geologisch-mineralogischen Untersuchungen an Bohrkernproben in spezialisierten Labors liegt das Schwergewicht bei der stratigraphisch-lithologischen Charakterisierung der durchteuften Gesteinsschichten sowie bei der mineralogisch-geochemischen Analyse von potenziellen Wasserfliesswegen im Wirtgestein und in den angrenzenden Rahmengesteinen. Ausserdem ist die Durchführung von felsmechanischen Laboruntersuchungen an Bohrkernen vorgesehen.

Die geologischen Untersuchungen dienen unter anderem dazu, Aussagen zu den folgenden Punkten zu machen:

- Lithologie, Mineralogie, Geochemie
- Detailstratigraphie, Fazies und Ablagerungsbedingungen
- Beckenentwicklung
- Schichtlagerung
- Art, Geometrie und Verteilung der tektonischen Trennflächen im makro- und mikroskopischen Bereich sowie Kluftsysteme, Kluftbeläge und -füllungen
- Allfällige wasserführende Systeme (Geometrie, Mineralogie, Porositäten)

3.3.2 Bohrlochgeophysik

Die vorgesehenen bohrlochgeophysikalischen Messungen dienen unterschiedlichen Zielsetzungen:

- Bestimmung der petrophysikalischen Parameter (Petrophysikalisches Logging)
- Erfassung der Strukturen (Strukturlogging)
- Erfassung bohrtechnischer Zusatzdaten (Bohrtechnisches Logging)
- Bestimmung von Schichtgrenzen (Bohrlochseismik)

Unterschiedliche Gesteine lassen sich anhand ihrer physikalischen Eigenschaften beschreiben und unterschieden. Die Eigenschaften lassen sich mit unterschiedlichen Methoden und Messverfahren bestimmen. Dazu gehören der elektrische Widerstand, elastische Eigenschaften, Dichte, Porosität, natürliche Gammastrahlung und Mineralogie. Für diese Untersuchungen etablierte Messverfahren sind z.B.:

- Widerstandsverfahren galvanische (z.B. FEL, DLL) oder induktive (z.B. IL, DIL) Verfahren
- Ausbreitung von akustischen Wellen z.B. Full-Waveform Sonic (FWS)
- Natürliche Gammastrahlung absolute und spektrale Intensität
- Radioaktive Messverfahren Messungen mit aktiven Gamma- und Neutronenquellen

Mit diesen Verfahren lassen sich Aussagen zu Lithologie, Gesteinsdichte und Porosität, Fazies und Ablagerungsbedingungen, felsmechanischen Parametern, elektrischer Leitfähigkeit der Formation und darin enthaltener Fluide, Schichtgrenzen, Diskontinuitäten (Klüfte, Störungen), Orientierung der Schichten (Lagerung/Bänderung) sowie zu Temperaturverhältnissen, Wärmeverhältnissen, Wärmeleitfähigkeit und -kapazität machen.

Die Grundlage des Strukturloggings ist eine möglichst hochauflösende Abbildung der Bohrlochwand. Dies kann in trockenen Bohrlöchern und Bohrlöchern mit klarer Spülung mit optischen Verfahren durchgeführt werden (Optical Bohrehole Imager OBI). In fluidgefüllten Bohrlöchern kann die Abbildung der Bohrlochwand mit akustischen Wellen im Ultraschallbereich (Borehole-TV BHTV; Acoustical Borehole Imager ABI) zum Einsatz kommen. Als weiteres Verfahren steht die hochauflösende Abtastung der Bohrlochwand mittels Pads, die mit punktförmigen Elektroden ausgestattet sind (Micro-Imager), zur Verfügung. Diese Messung erlaubt auch eine Abbildung der Bohrlochwand, wenn die Spülung aus bohrtechnischen Gründen eine Viskosität aufweist, in der akustische Verfahren keine Ergebnisse liefern.

Ziele der Auswertung der Bohrlochwand-Abbildungen sind:

- 1. Aussagen über lithologische/fazielle Wechsel
- 2. Erkennen von tektonischen Störungen, die das Bohrloch schneiden sowie Bestimmung ihrer räumlichen Lage
- 3. Charakterisierung der Klüfte bezüglich ihrer Kluftweite und -füllung
- 4. Analyse von spannungsinduzierten Bohrlochrandausbrüchen und Zugrissen

Im Rahmen des bohrtechnischen Loggings ist vorgesehen, Bohrlochdaten zu folgenden Aspekten zu erheben:

- Neigung und Azimut des Bohrpfads
- Kleinskalige Richtungsänderungen (Dog-Legs)
- Kaliber / Bohrlochdurchmesser und -volumen
- Bohrlochausbau, d.h. Güte der Zementation und Abfolge der Verrohrung

Zum Einhängen der Bohrlochmessungen in oberflächenseismische Messungen (2D-/3D-Seismik) können mit Hilfe von ins Bohrloch eingebrachten Geophonen bzw. Geophonketten oder optischen Wellenleitern ergänzende seismische Messungen zur Erstellung eines Geschwindigkeitsprofils ausgeführt werden. Mittels einer Anregung an der Oberfläche wird dann das seismische Wellenfeld entlang der Bohrungen aufgezeichnet. Dieses Messprinzip nennt man Vertical Seismic Profiling (VSP). Je nach Fragestellung kann die Anregung an einem einzelnen Punkt in der Nähe des Bohrlochs (zero-offset VSP), auf sich kreuzenden Linien (walkaway-VSP) oder flächenhaft im Umfeld des Bohrlochs (3D-VSP) durchgeführt werden.

Generell wird das geophysikalische Messprogramm für jeden Messeinsatz, der in der Regel vor dem Setzen der Verrohrung im offenen Bohrloch ausgeführt wird, in der jeweiligen Bohrung eng auf die Fragestellung und die technischen Randbedingungen abgestimmt. Dabei sind insbesondere die folgenden Aspekte zu berücksichtigen:

- Geologische Fragestellung gemäss Untersuchungsprogramm
- Abstimmung der Verfahren auf die Eigenschaften des Bohrlochs und der Bohrspülung
- Befahrbarkeit des Bohrlochs
- Operatives Risiko

3.3.3 Untersuchungen Hydrogeologie und Hydrochemie

Die Ziele der hydrogeologischen und hydrochemischen Untersuchungen sind die detaillierte Erkundung der hydraulischen Durchlässigkeit und Potenziale in den Aquiferen und Aquitarden sowie die Abklärung des Chemismus und des Alters der Tiefengrundwässer in den Aquiferen und der Porenwässer in den Aquitarden.

Hierzu ist es notwendig, die Registrierung aller Wasserzuflüsse und -verluste sowie Gaszutritte während Bohr-, Stillstand- und Testphasen vorzunehmen, um daraus die Spülungsbilanz und die Bohrlochgeschichte zu erstellen zur Festlegung der Randbedingungen für die hydraulischen Untersuchungen.

Mit Hilfe von hydraulischen Packertests kann eine detaillierte hydraulische Charakterisierung von ausgewählten Bohrlochabschnitten zur Bestimmung der Transmissivität, der hydraulischen Durchlässigkeit, des Fliessmodells und des hydraulischen Potenzials vorgenommen werden. Ergänzend können zur Gesteinscharakterisierung der Wirtgesteinsstrecke Gaseintrittsdruckmessungen (sogenannte "Gas Threshold Pressure Tests") durchgeführt werden. In Abhängigkeit von der Transmissivität des Testintervalls kommen verschiedene Testmethoden zum Einsatz:

- Pumptests mit konstanter Förderrate bzw. konstantem Druck
- Injektionstests mit konstantem Druck oder konstanter Fliessrate
- Slugtests
- Pulsetests

In der Regel werden die oben beschriebenen Testmethoden miteinander kombiniert, d.h. als Testsequenz in unterschiedlicher Reihenfolge nacheinander ausgeführt.

Ergänzend zu den hydraulischen Packertests kann bei einer genügend hohen Transmissivität auch ein sogenanntes Fluid-Logging durchgeführt werden. Hierbei werden die Wasserzuflüsse mit Hilfe einer Serie von Temperatur-Leitfähigkeitslogs und/oder Flowmeter-Logs identifiziert und die Durchlässigkeit von diskreten wasserführenden Zonen bestimmt.

Nach Abschluss des Bohr- und Testprogramms können bei Bedarf Langzeitbeobachtungssysteme in den Bohrungen installiert werden, da oftmals während der aktiven Bohr- und Testphase nur eine beschränkte Zeit zur Verfügung steht. Ziel der Langzeitbeobachtung ist:

- die Ermittlung der "ungestörten" hydraulischen Potenziale
- die Ermittlung von repräsentativen hydraulischen Parametern (Transmissivität, Speicherkoeffizient, Porosität) im regionalen Massstab
- die allfällige Entnahme von Wasserproben zur hydrochemischen Charakterisierung bzw. Altersbestimmung der Tiefengrundwässer

Dazu werden ausgewählte Bohrlochstrecken mit Hilfe von im Bohrloch installierten Multipacker-Systemen hydraulisch voneinander getrennt und mit entsprechenden Druck- und Temperatursensoren bestückt.

Im Zuge der Bohr- und Testarbeiten können aus ausgewählten Bohrlochabschnitten, in der Regel in Verbindung mit den hydraulischen Packertests, Wasser- und/oder Gasproben in geeigneter Qualität und Menge entnommen werden, um hydrochemische und Isotopen-Analysen durchführen zu können.

Zur Beprobung und Untersuchung von Porenwässern aus Aquitarden kommen im Labor Methoden wie die Vakuum-Extraktionstechnik, die diffusive Äquilibrierung, die advektive Verdrängung, die Kationen-Austauschmethode an oder das Auspressen (engl. Squeezing) und Auslaugen (engl. Leaching) von Gesteinsproben aus Bohrkernen zur Anwendung (Wersin et al. 2013).

3.3.4 Geotechnik

Ziel der Untersuchungen ist es, eine boden- und felsmechanische Charakterisierung der relevanten Gesteine, der vorkommenden Trennflächen (sowie eventuellen Störungsflächen und -zonen) des Gebirges als Ganzes sowie der Gebirgsspannungen vorzunehmen. Diese Charakterisierung soll sich nicht nur auf den Bereich des Wirtgesteins bzw. des zukünftigen Tiefenlagers beschränken, sondern auch das Hangende und gegebenenfalls auch das Liegende einschliessen, um ein gesamtheitliches Bild zu erhalten und um Grundlagen zur Planung und Erstellung von zukünftigen Bauwerken (wie z.B. Rampen, Schächte etc.) zu erhalten. Die Laboruntersuchungen von Bohrkernen und die In situ-Messdaten dienen dabei zur Bestimmung von:

- Druck- und Zugfestigkeit
- Scherfestigkeit
- Deformationsverhalten
- spezifischem Gewicht, Raumgewicht, Porosität, thermischen Eigenschaften und Quellverhalten

Im Bohrloch können In situ-Spannungs- und/oder Dilatometer-Messungen vorgenommen werden. Zusätzliche Informationen zu den felsmechanischen Messungen können auch mit Hilfe von bestimmten geophysikalischen Bohrlochmessungen gewonnen werden (vgl. Kap. 3.3.2). So ermöglichen zum Beispiel Kaliber-Messungen die Detektion von Bohrlochrandausbrüchen und erlauben so Aussagen zur Spannungssituation um das Bohrloch. Auch kann aus geophysikalischen Laufzeitmessungen (z.B. VSP) auf die geomechanischen Eigenschaften und auf den Spannungszustand im Gebirge zurückgeschlossen werden. Spezielle geophysikalische Logging-Methoden (z.B. Ultrasonic-Messung) liefern auch Hinweise auf die Spannungssituation sowie die Anisotropie im Gebirge.

An möglichst ungestört entnommenen und speziell versiegelten sowie schonend gelagerten bzw. transportierten Kernproben⁹ sollen im Labor geomechanische Gesteins- und Trennflächeneigenschaften bestimmt werden. Dabei kommen standardisierte Tests, aber auch spezielle Versuchsanordnungen sowie unterstützend auch indirekte Messmethoden (wie z.B. 'Durchschallung') zur Anwendung. Neben Kurzzeitversuchen sind zur Untersuchung des Kriech- und Quellverhaltens aber auch von Porenwasserdruck-Effekten (v.a. bei gering durchlässigen Gesteinen) Langzeitversuche vorgesehen. Neben den Parametern Festigkeit und Verformbarkeit werden auch mineralogische und petrophysikalische Eigenschaften (wie Tongehalt, Wassergehalt, Porosität, Dichte, Anisotropie etc.) erfasst. Ergänzend lassen sich Untersuchungen zur Verwitterungsbeständigkeit/Aufweichbarkeit, Abrasivität/Quarzgehalt etc. ausführen.

Die im Bohrloch geplanten geomechanischen Messungen (Spannungsmessungen und/oder Dilatometertests) werden nach vielfach erprobten und bewährten Verfahren abgewickelt. Vereinzelt stehen die Anforderungen in Zusammenhang mit den geomechanischen Untersuchungen auch in Konflikt mit anderen erdwissenschaftlichen Untersuchungen aufgrund der evtl. zeitlich begrenzten Bohrlochstabilität, sodass gegebenenfalls Prioritäten gesetzt werden müssen.

Theoretisch ist die Entnahme von Kernen auch mittels direkter Beprobungsverfahren (wie z.B. dem sogenannten 'Side-wall-coring') denkbar.

3.4 Beginn, Dauer und Programmanpassungen (nach Art. 59c KEV)

Die erdwissenschaftlichen Untersuchungen in SGT-E3 mittels Sondierbohrungen sollen unmittelbar nach Rechtskraft der Bewilligung durch das UVEK beginnen, die derzeit auf Ende 2018 terminiert ist. Es wird mit einer Untersuchungsdauer von ca. drei bis fünf Jahren gerechnet. Die Reihenfolge des Abteufens der Sondierbohrungen im Standortgebiet ZNO wird zu einem späteren Zeitpunkt aufgrund der dannzumal geltenden Prioritäten festgelegt.

In Abhängigkeit der Befunde von vorgängigen Bohrungen und/oder der Ergebnisse der seismischen Messungen sollen Möglichkeiten für ergänzende Arbeiten offengehalten werden, z.B. für einen abgelenkten Ast aus einem bestehenden Bohrpfad zur weiteren Erkundung des einschlusswirksamen Gebirgsbereichs. Ausserdem können sich zusätzliche Zielsetzungen ergeben, die dazu führen, dass beispielsweise mehrere Bohrungen vom Bohrplatz der Sondierbohrungen Rheianu in verschiedene Richtungen ausgeführt werden (vgl. Kap. 6.2.2 und 7.1).

Solche Entscheide sind in Absprache mit den Aufsichtsbehörden zu treffen. Damit soll auf Ergebnisse von laufenden Untersuchungen in flexibler Weise reagiert werden können.

Die Nagra behält sich vor, nach Konsultation bzw. Stellungnahme der zuständigen Aufsichtsorgane die erforderlichen Anpassungen vorzunehmen, sei es durch Einsatz zusätzlicher Untersuchungen, Anpassungen der Bohrtechnik und der Testverfahren oder Weglassung nicht mehr benötigter Programmteile.

Ebenso ist denkbar, dass sich bereits im Verlauf der Sondierbohrungen und Untersuchungen Resultate zeigen, die eine Weiterführung der Arbeiten nicht rechtfertigen. Für diesen Fall behält sich die Nagra vor, das Sondier- und Untersuchungsprogramm abzubrechen.

4 Rechtliche Voraussetzungen für die Bewilligung des Bohrplatzes

4.1 Rechtslage und Prüfungsumfang

Erdwissenschaftliche Untersuchungen in möglichen Standortregionen, die dazu dienen, Kenntnisse im Hinblick auf ein geologisches Tiefenlager zu beschaffen, bedürfen einer Bewilligung des Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK, Art. 35 Abs. 1 KEG). Die Erteilung der bundesrechtlichen Bewilligung setzt insbesondere voraus, dass keine von der Bundesgesetzgebung vorgesehenen Gründe, namentlich des Umweltschutzes, des Natur- und Heimatschutzes und der Raumplanung, einer solchen entgegenstehen (Art. 35 Abs. 2 lit. b KEG). Die Bewilligung wird somit nicht schon erteilt, wenn die kernenergierechtlichen Anforderungen erfüllt sind, es müssen darüber hinaus auch jene des übrigen Bundesrechts eingehalten werden. Zu den Anforderungen des Bundesrechts zählen insbesondere:

- das Raumplanungsrecht mit seinen Planungszielen und Grundsätzen (Art. 1 und 3 Raumplanungsgesetz, RPG),
- die Rücksichtnahme auf Landschaften und Kulturdenkmäler (Art. 3 Natur- und Heimatschutzgesetz, NHG),
- die Rücksichtnahme auf wertvolle Lebensräume mit Tieren und Pflanzen (Art. 18 NHG),
- die vorsorgliche Emissionsbegrenzung (Art. 11 Umweltschutzgesetz, USG),
- der Schutz der Gewässer vor nachteiligen Einwirkungen (Art. 1 Gewässerschutzgesetz, GSchG).

Bei der Wahl der Bohrstandorte ist eine Standortevaluation erforderlich, die den materiellen Gehalt der Ziele und Grundsätze der Raumplanung (Art. 75 BV sowie Art. 1 und 3 RPG, vgl. Urteil des Bundesgerichts 1c_604/2014 vom 12.05.2015, BG 2015) berücksichtigt. Dabei gilt es insbesondere zu beachten, dass die wesentlichen Eingriffe und Anlagen mit Auswirkungen auf Raum und Umwelt temporärer Natur sind (Betrieb des Bohrplatzes).

Mit der Bewilligung gemäss Art. 35 KEG werden sämtliche nach Bundesrecht notwendigen Bewilligungen erteilt (Art. 49 Abs. 2 KEG). Kantonale Bewilligungen und Pläne sind nicht erforderlich. Das kantonale und kommunale Recht ist zu berücksichtigen, soweit es das Projekt nicht unverhältnismässig einschränkt (Art. 49 Abs. 3 KEG). Kantonale und kommunale Nutzungspläne gelten dabei als kantonales Recht.

4.2 Befristung

Art. 36 Abs. 2 KEG verlangt eine Befristung der Bewilligung für erdwissenschaftliche Untersuchungen. Dabei ist zunächst die Geltungsdauer der Bewilligung an sich zu befristen (Zeit, innert welcher der Baubeginn zu erfolgen hat) und die Zeitdauer, während der die bewilligten Aktivitäten (eigentliches Abteufen der Bohrungen) andauern dürfen. Bei einigen Untersuchungsstandorten bleiben zum Zweck der Langzeitbeobachtung in Bohrungen gewisse Einrichtungen (wie z.B. Bohrkeller mit Beobachtungsinstrumenten sowie Zufahrtsmöglichkeit und Stromversorgung) bestehen. Auch für diese Bauten ist die Bewilligung entsprechend zu befristen (vgl. Kap. 8.2).

4.3 Rechtsverhältnisse am Bohrplatz

Die Gesuchstellerin hat alle notwendigen Rechte zur Durchführung der Bohrarbeiten und für den Fortbestand des Bohrkellers (Baurecht) freihändig erworben. Die Durchführung eines Enteignungsverfahrens im Sinne von Art. 51 KEG ist daher nicht notwendig.

5 Technische Gesuchsunterlagen (nach Art. 58 KEV)

Das vorliegende Sondiergesuch umfasst die notwendigen Gesuchsunterlagen nach KEG resp. KEV zur Erteilung einer befristeten Bewilligung für einen Bohrplatz und die Durchführung von Sondierbohrungen auf dem Gebiet der Parzelle Kat.-Nr. 1148 (Ansatzpunkt der Bohrungen ca. 689'571 / 277'235, ca. 387 m ü.M.). Die zugrundeliegenden massgeblichen Gesetze und Verordnungen sind dem Bericht vorangestellt (vgl. Seite IX, "Gesetze und Verordnungen"), die Richtlinien und Normen sind in Kapitel 9 ("Literaturverzeichnis") aufgeführt.

Der Bohrplatz auf der Parzelle Kat.-Nr. 1148 liegt in der Gemeinde Rheinau (Kanton Zürich; vgl. Fig. 5.1) und wird derzeit landwirtschaftlich als Fruchtfolgefläche genutzt (vgl. Kap. 6.5.9).

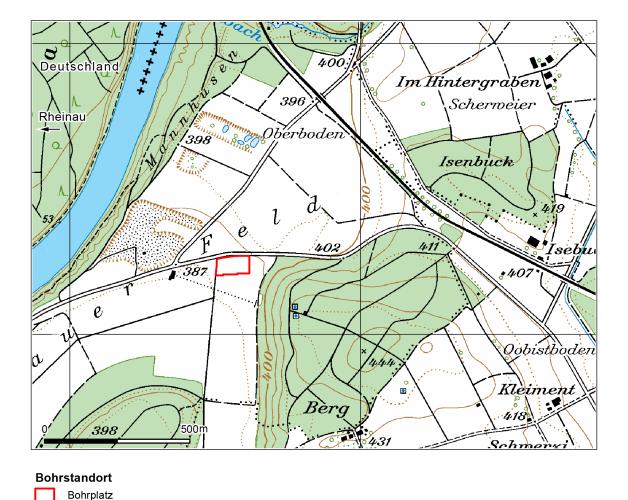


Fig. 5.1: Lage und Grösse des Standorts des Bohrplatzes Rheinau.

Die nachstehend umschriebenen Massnahmen sind für eine Zeitspanne von bis zu fünf Jahren ab Baubeginn geplant. Nach Beendigung der Sondierbohrungen wird der Bohrplatz aufgehoben und die Parzelle wird rekultiviert, sodass eine landwirtschaftliche Nutzung wieder möglich ist. Verbleiben werden bei Bedarf lediglich der Bohrkeller mit entsprechenden Messeinrichtungen sowie eine Zufahrt zum Bohrkeller. Diese Anlagen dienen der Langzeitbeobachtung, welche mehrere Jahre bis Jahrzehnte andauern kann. Deshalb wird für den Bohrkeller und seinen

Zugang resp. seine Zufahrt eine Betriebs- und Nutzungsbewilligung bis zum rechtskräftigen Entscheid über eine nukleare Baubewilligung für ein geologisches Tiefenlager, längstens jedoch von 45 Jahren nach Abschluss aller Bohrarbeiten und Fertigstellung des Bohrkellers beantragt. Falls diese Betriebsdauer sich als nicht ausreichend erweisen sollte, wird ein Gesuch auf Verlängerung gestellt.

Falls keine weiteren Untersuchungen und/oder Langzeitbeobachtungen geplant sind, werden die Bohrlöcher gemäss den Auflagen der Aufsichtsbehörde verfüllt und der Bohrplatz anschliessend rekultiviert.

5.1 Örtliche Gegebenheiten

Die für die Sondierbohrungen, d.h. Bohrplatz und Depotflächen, vorgesehene Fläche der Parzelle Kat.-Nr. 1148 weist eine Breite von ca. 60 m und eine Länge von ca. 120 m auf (vgl. Beilagen 4 und 5) und wird derzeit landwirtschaftlich als Fruchtfolgefläche genutzt. Das Grundstück hat eine leichte Hangneigung von ca. 3 %. Die gesamte vorübergehend beanspruchte Fläche inklusive Erschliessung beträgt ca. 6'900 m². Diese Fläche wird für die Dauer der Erstellung des Bohrplatzes und der Bohrarbeiten zuzüglich der Rekultivierungsphase der landwirtschaftlichen Bewirtschaftung entzogen.

Die Parzellen befinden sich östlich der Ortschaft Rheinau in der Nähe der Landesgrenze zur Bundesrepublik Deutschland. Östlich des Bohrplatzes in einem Abstand von ca. 80 m liegt das Waldgebiet "Bergholz". Südwestlich befindet sich im Abstand von ca. 190 m vom vorgesehenen Standort des Bohrgeräts die Schiessanlage "Rheinauerfeld". Der Bohrplatz tangiert die Gefahrenzone 3 der Schiessanlage (Schweizer Armee 2006, vgl. Beilage 5). Die Gefahrenzone 3 darf während des Schiessbetriebs betreten werden. Über allfällige weitere Sicherheitsmassnahmen befindet der eidgenössische Schiessexperte.

Der Bohrplatz wird im Bereich der Lastplatte von einer bestehenden Regenwasserleitung RW 180 unterquert. Diese ist während der Erstellung und des Betriebs des Bohrplatzes ausser Betrieb zu nehmen. Nach Abschluss der Arbeiten ist sie wieder in Stand zu stellen.

Die Ortschaft Rheinau liegt in einer Distanz von ca. 1.5 km westlich des geplanten Bohrplatzes.

5.2 Platzerstellung und -ausrüstung

Für die Erstellung der gesamten Anlage wird primär der Oberboden im Bereich des Bohrplatzes, der Zufahrt und der Parkplätze abgetragen (vgl. Beilagen 5-7). Das Oberbodenmaterial (Humus) wird im östlichen Bereich des Bohrplatzes mit einer Schütthöhe von ca. 1.50 m deponiert.

In einem zweiten Arbeitsschritt werden im Bereich des Bohrplatzes Erdarbeiten für die notwendigen Infrastrukturbauten sowie leichte Terrainausebnungen ausgeführt. Das anfallende Unterboden- und Ausgangsmaterial wird westlich des Bohrplatzes deponiert (vgl. Beilage 5). Die Schütthöhe des Aushubdepots beträgt ca. 3.0 m. Beim Aushubmaterial handelt es sich um frühbis spätwürmeiszeitliche, siltig-sandige Schotter (Fig. 5.2 und Beilage 3). Die Quartärmächtigkeit im Bereich des Bohrplatzes beträgt rund 15 m.

Die Schütthöhen sind aufgrund des Leitfadens für Bodenschutz beim Bau (Häusler & Salm 2001) gewählt.

Für den Arbeitsbereich des Bohrplatzes ist eine befestigte Fläche mit einer Länge von 60 m und einer Breite von 40 m vorgesehen. Diese Fläche wird mit einer Fundationsschicht (ungebundene Gemische 0/45 mm und Planiermaterial 0/16 mm, Schichtstärke gesamt 0.5 m) und einem einschichtigen Belag (Tragdeckschicht AC T 22 N TDS, Schichtstärke 0.1 m) versehen.

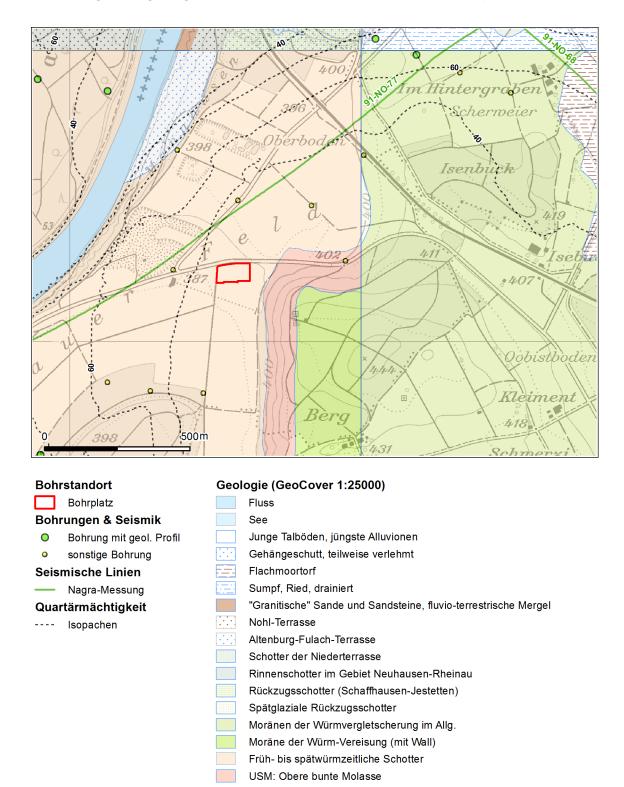


Fig. 5.2: Geologische Karte im Bereich des Standorts der Sondierbohrungen Rheinau.

Im Zentrum des Bohrplatzes wird ein innerer Arbeitsbereich durch 2-reihig abgesenkte Bundsteine abgegrenzt. Der innere Arbeitsbereich dient als Standplatz des Bohrgeräts inklusive Nebenaggregate und dem Gestängelager (vgl. Beilage 5, grün umrandet). Der Randabschluss dient sowohl der visuellen als auch der entwässerungstechnischen Trennung. Aufgrund des Gefälles sammeln sich die auf dieser Fläche anfallenden Flüssigkeiten im Bohrkeller. Der Belag verhindert wirksam ein Versickern von Flüssigkeiten.

Auf diesen befestigten Plätzen installiert sich die Bohrfirma mit den notwendigen Maschinen, Geräten, Bohrgestängen, Magazinen, Containern etc. zur Ausführung der geplanten Bohrarbeiten

Ab Baubeginn wird eine Bewilligungsdauer für den Betrieb des Bohrplatzes von fünf Jahren beantragt.

5.3 Bohrkeller

Im Zentrum des Bohrplatzes wird der Bohrkeller in Ortsbeton wasserdicht erstellt. Die Bohrungen bzw. der Bohrkeller sind T-förmig angeordnet mit unterschiedlichen Abmessungen in beide Bohrrichtungen (vgl. Tab. 5.1), sodass ein Abteufen sowohl von Senkrecht- als auch von Schrägbohrungen möglich ist. Der Bohrkeller ist für Schrägbohrungen Richtung N, S, W und E ausgelegt (vgl. Fig. 7.1).

Unabhängig von der Bohrkellergrösse wird für eine bessere Lastverteilung des Gewichts der Bohranlage rund um den Bohrkeller eine Lastplatte mit einer Breite von 3.0 m und einer Stärke von 0.4 m erstellt. Der Bohrkeller mit seiner Bodenplatte (Stärke 0.3 m) und der Umrandung ist dafür ausgelegt, Lasten vom Bohrgerät bis zu 100 t über eine Fläche von ca. 5 m² abzutragen. Damit ist sichergestellt, dass Bohranlagen bis ca. 175 t Hakenlast auf dem Bohrplatz aufgestellt werden können, die genügend Reservekapazität bieten, um eine Endteufe von max. 2'000 m zu erreichen. Der Bohrkeller ermöglicht ausserdem, die unterschiedlichsten Bohrgeräte flexibel an den geplanten Bohrpunkten aufzustellen. Über den Bohrkeller mit seiner Umrandung können die vorderen Lastabtragspunkte der verschiedenen Bohrgeräte abgetragen werden. Falls die Tragfähigkeit des Platzes von ca. 30 t (Lastabtragsfläche ca. 5 m²) für die hinteren Lastabtragspunkte für das vorgesehene Bohrgerät nicht ausreichend sein sollte, ist vorgesehen, zusätzlich kleine, bodenebene Fundamente für den notwendigen Lastabtrag zu erstellen. Das Design und die Ausmasse des Bohrplatzes verändern sich dadurch nicht. Die Planung des Bohrkellers und der Bodenplatte (inklusive Statik, Armierung, Lastabtrag etc.) in Abhängigkeit des Baugrunds ist noch zu bestätigen, sobald das Bohrgerät für die Ausführung feststeht.

Da der Bohrkeller auch gleichzeitig für die erste Sammlung der Abwässer dient, wird im Bohrkeller auch ein Pumpensumpf mit den Massen von $0.8 \text{ m} \times 0.8 \text{ m} \times 0.8 \text{ m}$ erstellt ($L \times B \times T$; vgl. Fig. 5.3 - 5.5 und Beilage 8).

Tab. 5.1: Abmessungen Bohrkeller (Innenmasse).

Bohrrichtung	Länge [m]	Breite [m]	Tiefe min. [m]
West-Ost	6.9	2.5	2.5
Nord-Süd	4.9	2.5	2.5

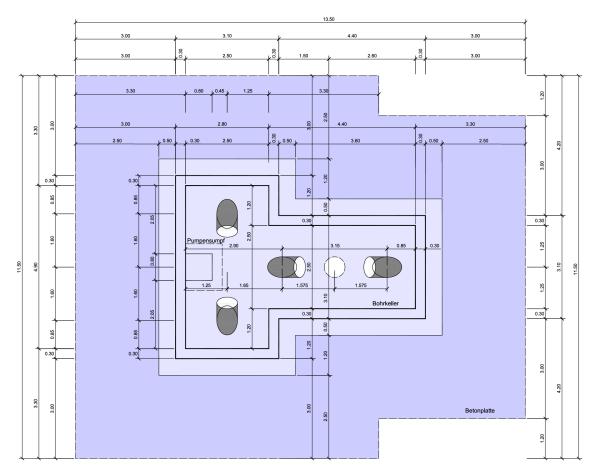


Fig. 5.3: Grundriss des Bohrkellers für fünf Bohrrichtungen.

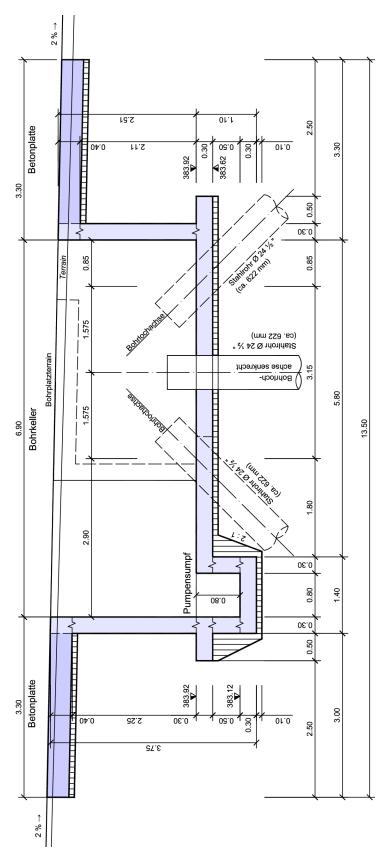


Fig. 5.4: Längsschnitt (B-B) des Bohrkellers mit den Bohrrichtungen West und Ost und den entsprechenden Bohransatzpunkten (Lage des Schnitts vgl. Beilage 8).

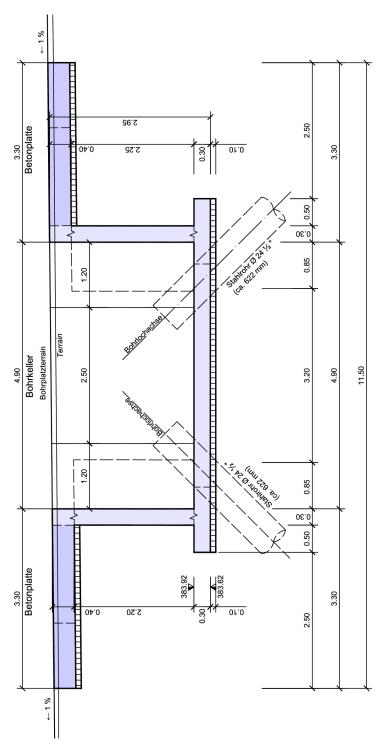


Fig. 5.5: Querschnitt des Bohrkellers (A-A) mit den Bohrrichtungen Nord und Süd und den entsprechenden Bohransatzpunkten (Lage des Schnitts vgl. Beilage 8).

5.4 Nebenanlagen

5.4.1 Container

Für die Mannschafts- und Messcontainer werden in den Randbereichen Kiesflächen mit einer Fundationsschicht (ungebundene Gemische 0/45 mm, Schichtstärke gesamt 0.5 m; Flächen gewalzt) erstellt.

Die einzelnen Container für die Überwachung des Bohrbetriebs sowie zur laufenden Untersuchung und Auswertung werden voraussichtlich am nördlichen Bohrplatzrand angeordnet (vgl. Beilage 5). Die Anordnung und Anzahl der Container kann sich aufgrund der Anforderungen zur Platzierung des Bohrgeräts noch kurzfristig leicht ändern. Für die Überwachungssysteme der Bohranlage und des Bohrbetriebs sowie für die Analyse von Fluiden und Gasen wird von den Containern bis zum Bohrkeller ein Kabelkanal erstellt.

Am westlichen Bohrplatzrand können für die Mannschaft zwei Container sowie für den Bohrmeister und die Projektleitung jeweils ein Container platziert werden. Die Mannschaftscontainer werden mit einer Sanitäranlage (WC und Duschen) ausgestattet, deshalb werden sie unmittelbar beim Fäkalientank aufgestellt. Um die Platzverhältnisse zu optimieren, werden die Container, wo möglich, aufeinander gestellt.

Die Anordnung der Container auf dem Bohrplatz (vgl. Beilage 5) kann sich in Abhängigkeit vom eingesetzten Bohrgerät noch verändern und ist deswegen auf den Plänen nicht als abschliessend anzusehen. Die dargestellte Anordnung der Container geht von einer Ost-West ausgerichteten Anordnung des Bohrgeräts aus, die auch für eine Vertikalbohrung geeignet ist.

Falls andere Bohrrichtungen, wie zum Beispiel eine Schrägbohrung nach Norden oder Süden ausgeführt werden sollen, muss die Anordnung der Container entsprechend angepasst werden.

Im Bereich des Zugangs zum Bohrplatz ist vorgesehen, einen Infocontainer aufzustellen.

5.4.2 Parkplatz

Es sind insgesamt 11 Parkplätze vorgesehen. Diese werden entlang der Platzeinfahrt sowohl nördlich als auch südlich der Fahrfläche mit einer Fundationsschicht (ungebundene Gemische 0/45 mm, Schichtstärke gesamt 0.5 m; Flächen gewalzt) angeordnet.

5.4.3 Umzäunung

Der Bohrplatz wird gesichert und der Zutritt geregelt. Um das gesamte Bohrplatzareal wird ein Bauzaun erstellt (vgl. Beilage 5).

5.5 Erschliessung und Verkehr

5.5.1 Verkehrserschliessung

Die Verkehrserschliessung erfolgt über den Einlenker einer bestehenden Flurstrasse zum öffentlichen Strassennetz (vgl. Fig. 5.6 und Beilage 4). Ca. 1.6 km vom Bohrplatz entfernt befindet sich die Nationalstrasse A4 Winterthur – Schaffhausen. Die nächste Autobahnausfahrt/-einfahrt

Nr. 8 Benken liegt ca. 2.2 km in nordöstlicher Richtung entfernt. Ab dieser Ausfahrt ist der Bohrplatz über die Kantonsstrassen RVS 534 (Marthalerstrasse) und RVS 532 (Poststrasse) zu erreichen.

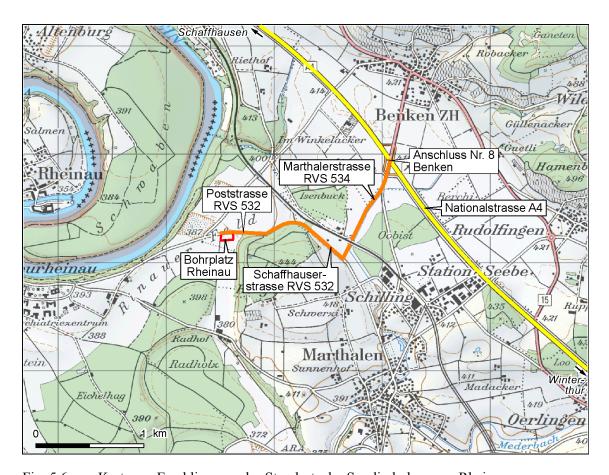


Fig. 5.6: Karte zur Erschliessung des Standorts der Sondierbohrungen Rheinau.

5.5.2 Strassenbelastung

Die Arbeiten auf dem Bohrplatz werden während der Betriebsphase im 24-h-Betrieb ablaufen.

Die Gesuchstellerin hat hinsichtlich des durch den Bohrbetrieb verursachten LKW-Verkehrs Erfahrungen aus früheren Bohrbetrieben in der Nordschweiz, am Wellenberg (Kanton Nidwalden; Gassler & Karsch 1996) oder im Zürcher Weinland (Sondierbohrung Benken; Macek & Gassler 2001). In der Nordschweiz wurde jede Fahrt registriert und die Auswertung zeigte ein durchschnittliches LKW-Aufkommen von ca. 50 Fahrten pro Woche (Summe von Hin- und Rückfahrten). Der Anteil der aus betrieblichen Gründen unumgänglichen Fahrten während der Nacht und sonntags betrug ca. 5 %.

Es ist zu beachten, dass das LKW-Aufkommen je nach Projektphase variiert. Während der Bauphase (d.h. Erstellung Bohrplatz und Installation Bohrgerät) und der Betriebsphase (d.h. Abteufen der Bohrungen) werden die höchsten LKW-Aufkommen erwartet. Während der langfristigen Überwachungsphase sind nur zum Ein- und Ausbau des Messequipments, sowie für allfällige Reparaturarbeiten LKW-Fahrten erforderlich, die in der Regel nur tagsüber stattfinden. Während der Beobachtungsphase für die Datenerhebung sind grundsätzlich keine LKW-Fahrten erforderlich.

Der durchschnittliche Tagesverkehr (DTV) für Motorfahrzeuge auf der Kantonsstrasse RVS 534 im Jahr 2013 beträgt gemäss dem kantonalen Gesamtverkehrsmodell (GVM-ZH 2014) 3'312 Fahrzeuge pro Tag. Für das Jahr 2030 wird ein DTV von 4'836 Fahrzeugen pro Tag prognostiziert. Aufgrund dieser Prognose ist der zusätzliche Bohrplatzverkehr während dem Bau und dem Betrieb des Platzes für die Strassenbelastung von untergeordneter Bedeutung.

5.6 Wasserversorgung

Es ist vorgesehen, den Bohrplatz direkt an die ca. 100 m entfernte, südlich verlaufende Wasserleitung PE DN 315 mm anzuschliessen, die zum örtlichen Wasserversorgungsnetz der Gemeinde Rheinau gehört (vgl. Beilage 5 und Fig. 5.7).

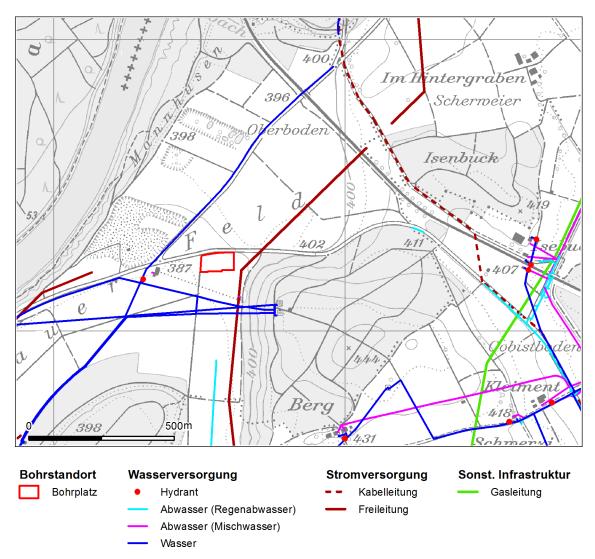


Fig. 5.7: Karte zur Erschliessung des Standorts der Sondierbohrungen Rheinau mit Wasser, Abwasser und Strom.

Unmittelbar nach dem Anschlussschieber des Bohrplatzes wird ein Zählerschacht angeordnet, um die Bezugsmengen festzuhalten. Die Art des Wasserzählers ist mit dem örtlichen Werkleitungseigentümer und Betreiber abzusprechen. Die interne Versorgung des Bohrplatzes wird

mittels einer Anschlussleitung PE DN 160 mm sichergestellt, an welcher noch einzelne Abgänge für die Versorgung von Containern möglich sind. Für die Sicherstellung des Löschschutzes wird zwischen den Containern und den Parkplätzen nördlich des Bohrplatzes ein Hydrant platziert.

Die Anschlüsse der Container sowie die Zuleitung können ober- oder unterirdisch erfolgen (je nach Witterung und Jahreszeit). Unmittelbar beim Bohrkeller ist ein Anschlusspunkt für die Bohrbelange vorzusehen.

5.7 Entsorgung

Die während der Betriebsphase anfallenden Abwässer werden soweit aufbereitet, dass die vorgeschriebenen Einleitgrenzwerte bezüglich Qualität und Menge in die Kanalisation eingehalten werden. Die Prinzipien der Wasseraufbereitung auf der Baustelle richten sich nach der SN-Norm 509 431 (SIA 1997). Sie können wie folgt charakterisiert werden:

- Meteorwasser: Flächenförmige Versickerung, Versickerung über die Schulter
- Wasser vom Bohrplatz (äusserer Arbeitsbereich): Absetzbecken mit Ölabscheider und Schlammfang → Stapelbecken → ggf. pH-Neutralisation und Koaleszenzabscheider → Abführen in ARA
- Wasser / Bohrspülflüssigkeit (innerer Arbeitsbereich): Pumpensumpf → Absetz-/Schlamm-becken → Desander/Desilter → pH-Neutralisation → Stapelbecken → Kanalisation (gereinigtes Abwasser) resp. Deponie (Bohrschlamm)
- Aquifer-Wasser: Absetzbecken → Kontrolle (Temperatur, pH-Wert und Leitfähigkeit) → Kanalisation
- Häusliche Abwässer: via Fäkalientank in ARA

Für den Betrieb des Bohrplatzes wird vor Baubeginn ein Entwässerungskonzept aufgestellt, das zur Einhaltung der folgenden Grundsätze dient:

- Bei Abwässern: Vermeiden, vermindern, separat fassen, rezirkulieren, behandeln, ableiten.
- Einzelne Abwasserteilströme sind möglichst am Ort ihres Anfalls, vor der Vermischung mit anderen Abwässern, zu fassen.
- Nicht verschmutztes Abwasser ist vorzugsweise versickern zu lassen (z.B. Parkplätze).
- Verschmutztes Abwasser muss auf der Baustelle mittels Sedimentation bzw. Neutralisation vorbehandelt werden.
- Alkalische Abwässer dürfen nicht versickert oder in ein oberirdisches Gewässer eingeleitet werden.
- Wassergefährdende Stoffe dürfen weder im Boden versickern, noch in ein Gewässer oder in eine Kanalisation gelangen.

Das Entwässerungskonzept regelt zudem die notwendigen Massnahmen bei ausserordentlichen Ereignissen und Störungen sowie die Aufgaben und Verantwortlichkeiten der Beteiligten. Das Entwässerungskonzept basiert auf dem eidgenössischen Gewässerschutzgesetz (GSchG) und der -verordnung (GSchV), den kantonalen und kommunalen Gewässerschutzbestimmungen sowie den Auflagen und Bedingungen der behördlichen Bewilligungen und dem generellen Entwässerungsplan (GEP) der Gemeinde.

Die auf dem Bohrplatz anfallenden Abfälle und das Bohrklein werden gemäss einem Entsorgungskonzept über bestehende Entsorgungswege (vgl. Kap. 5.7.4) entsorgt.

5.7.1 Häusliches Abwasser

Das häusliche Abwasser wird in einem Fäkalientank gesammelt. Das Abwasser wird in regelmässigen Intervallen aus dem Fäkalientank abgesaugt, abtransportiert und in der ARA Rheinau entsorgt (vgl. Kap. 5.7.4). Der Tank ist mittels einer Füllstandsmessung mit Hinweissignal gegen eine Überfüllung zu sichern.

5.7.2 Meteorwasser

Das Dachwasser der Container fliesst platzabgewandt ab und versickert flächenförmig über die Schulter. Die Parkplätze werden wasserdurchlässig ausgebildet (Kiesplätze, Aufbau vgl. Kap. 5.4.2 und Beilage 5).

Das Platzwasser des inneren Arbeitsbereichs (Fläche innerhalb der zweireihig abgesenkten Bundsteine, vgl. Beilage 5), das am meisten von einer Vermischung mit Bohrspülflüssigkeit und Verunreinigungen durch das Gestängelager gefährdet ist, wird in einem Pumpensumpf des Bohrkellers gesammelt und in Stapeltanks zwischengelagert. Eine allfällige Aufbereitung z.B. mittels Spaltanlage findet entweder auf dem Bohrplatz statt oder die Flüssigkeit wird mit Tankwagen abgeführt sowie extern behandelt und entsorgt.

Die Entwässerung der restlichen Platzfläche und das Waschwasser der Geologie und des Labors werden über Belagsrinnen einem Platzwasserschacht zugeführt und von dort mit einer Freispiegelleitung dem Ölabscheider mit Schlammfang zugeleitet. Das gereinigte Platzwasser wird primär dem ersten Stapelbecken zugeführt. Von dort wird das anfallende Abwasser abgesaugt, abtransportiert und in der ARA Rheinau entsorgt.

Für den Fall eines grösseren Regenereignisses werden zusätzlich zwei Stapelbecken vorgehalten, um das anfallende Wasser zu speichern und anschliessend mit Hilfe von Saugwagen in die ARA Rheinau zu entsorgen.

5.7.3 Bohrspülung

Die Bohrspülung wird in einem geschlossenen Kreislauf zirkuliert. Die eingesetzten Bohrspülungen werden aufbereitet und anschliessend fachgerecht entsorgt. Durch den Einsatz von einzementierten Standrohren werden oberflächennahe Grundwasserleiter gegen das Eindringen von Bohrspülung geschützt und gleichzeitig von den tiefen Aquiferen in den Bohrungen getrennt.

Die Spülflüssigkeit wird zunächst im Schlammbecken gesammelt bzw. zwischengelagert. Innerhalb des Schlammbeckens setzen sich grobe Schmutzteile ab. Die zu entsorgende Spülflüssigkeit wird in ein angrenzendes Mischbecken gepumpt und dort neutralisiert (pH-Neutralisation). Mittels Desander, Desilter und Zentrifuge werden ihr die Feststoffe entzogen. Falls nötig, werden zusätzlich Flockungsmittels eingesetzt. Die Feststoffe werden aus dem Mischbecken auf die örtlichen Transportmulden verladen und einer geeigneten Deponie zugeführt. Die klare Flüssigphase wird über einen Saugtank dem Platzwasserschacht (ES Südwest; vgl. Beilage 5) zugeführt und später das anfallende Abwasser abgesaugt, abtransportiert und der ARA Rheinau zugeführt.

5.7.4 Abfälle und Materialbewirtschaftung

Auf dem Bohrplatz anfallende Abfälle sind – sofern sie nicht vermieden werden können – getrennt nach Arten zur Verwertung und Entsorgung zu sammeln und abzutransportieren (vgl. SN-Norm 509 430 (SIA 1993), VVEA, VeVA, Richtlinien zur Verwertung mineralischer Bauabfälle etc.). Die Unternehmer resp. der Bohrunternehmer haben vor Baubeginn das Konzept für die Abfallentsorgung und die Entsorgung des Bohrkleins zu erarbeiten. Hierbei werden die vorgeschlagenen Deponien und allfällige alternative Deponien nochmals in Bezug auf ihre Eignung und Lage (Nähe zum Bohrplatz) überprüft sowie die jeweiligen Abnahmegarantien der Deponiebetreiber eingeholt.

Die in Tab. 5.2 aufgelisteten Anlagen sind für die Entsorgung der verschiedenen Feststoffe und Fluide vorgesehen.

Anlage	Deponietyp *	Ort	Entsorgungsgut
ARA Rheinau	-	Rheinau / ZH	Häusliche Abwässer, Platz- und Waschwasser, vorbehandelte Spülflüssigkeit
ISD Birchbüel	Typ B (Inertstoffe)	Beringen / SH	Aushubmaterial, Bohrkerne, Cuttings, Feststoffe aus der Bohrspülung, Bauabfälle
Deponie Häuli	Typ C (Reststoffe)	Lufingen / ZH	Feststoffe aus der Bohrspülung (evtl. teilweise aufbereitet)
RD MKD Pflumm	Typ E (Reaktorstoffe)	Beringen / SH	Alle übrigen für die Ablagerung zugelassenen Abfälle

Tab. 5.2: Entsorgungswege für Feststoffe und Fluide.

5.8 Stromversorgung

Die Energieversorgung der gesamten Bohrplatzinfrastruktur (Container, Spülpumpen und Aggregate) soll grundsätzlich mittels eines Anschlusses an das regionale Elektroversorgungsnetz (Mittelspannung / MS 16 kV, EKZ, vgl. Fig. 5.7 und Beilage 5) gelöst werden. Rund 275 m westlich des Schützenhauses Rheinau/Dachsen kann auf eine bestehende Mittelspannungsinstallation der EKZ (EKZ-Schalter Kieswerk) zugegriffen werden. Der Niederspannungsanschluss (NS) soll direkt beim Schützenhaus an einem vorhandenen Anschlusskasten (VK6+M Schützenhaus, vgl. Beilage 5) erfolgen. Es ist vorgesehen, Leerrohre (PE 150 / MS und PE 120 / NS) zu verlegen, um entsprechende Kabel zum Bohrplatz zu führen. Die technischen Details werden im Ausführungsprojekt zu einem späteren Zeitpunkt noch genauer spezifiziert, wenn der definitive Bedarf auf dem Bohrplatz und die benötigte Leistung des Trafo festgelegt werden.

Auf dem Bohrplatz wird eine temporäre Trafostation in Abhängigkeit vom eingesetzten Bohrgerät mit ca. 1.5 bis 2.5 MW Leistung platziert, welche den gesamten Strombedarf abdecken kann. Über die anschliessend angeordnete Unterverteilung werden alle benötigten Stromquellen angeschlossen. Die beschriebene Anschlussvariante bedarf der Abstimmung des Anschlusspunkts und der technischen Einrichtungen mit dem Energielieferanten sowie dem eidgenössischen Starkstrominspektorat (ESTI). Falls Anschlüsse aus technischer Sicht nicht möglich sein

^{*} Stofftypisierung gemäss Abfallverordnung (VVEA)

sollten bzw. die entsprechenden Kapazitäten nicht zur Verfügung stehen, kann die Versorgung auch über mobile Einheiten sichergestellt werden.

Aus Sicherheitsgründen muss während des Bohrbetriebs die Stromversorgung jederzeit gewährleistet sein. Aus diesem Grund ist durch die Bohrfirma eine eigene, auf die Bohranlage abgestimmte Notstrom-Dieselanlage, zu installieren (vgl. Kap. 5.9).

5.9 Aggregate und Fahrzeuge

Zum jetzigen Zeitpunkt steht noch nicht fest, welches Antriebssystem bzw. Bohrgerät eingesetzt wird. Grundsätzlich werden Bohrgeräte über ein Hydrauliksystem betrieben, welches im Normalfall durch Dieselmotoren angetrieben wird. Es wird jedoch angestrebt, einen elektrischhydraulischen Antrieb zum Einsatz zu bringen, da in der Nähe die Möglichkeit eines Anschlusses an das Mittelspannungsnetz besteht (vgl. Kap. 5.8), sodass lediglich eine Notstromversorgung installiert werden müsste.

Die Massnahmen in Zusammenhang mit der Luftreinhaltung richten sich nach der BAFU-Richtlinie "Luftreinhaltung auf Baustellen" (BAFU 2016). Entsprechend ist vorgesehen, als Betriebsstoff für Transportmittel und Maschinen (sofern sie nicht elektrisch betrieben sind) ausschliesslich schwefelarmen Diesel (S < 30 ppm) zu verwenden. Ausserdem ist der Einsatz von modernen, nachweislich gut gewarteten Lastwagen, Baumaschinen und Geräten geplant. Die Unternehmer werden verpflichtet, mit dem Angebot eine vollständige Liste für sämtliche auf dem Bohrplatz eingesetzten Geräte und Maschinen einzureichen.

Alle Baumaschinen und Geräte müssen die Grenzwerte gemäss der Luftreinhalte-Verordnung (LRV) einhalten. Bei den zu ergreifenden Massnahmen werden z.B. Partikelfilter eingesetzt.

Fahrzeugbewegungen im Bereich des Bohrplatzes werden als Hauptursache für allfällige Staubbelastungen während der Betriebsphase angesehen. Daher werden auf dem Bohrplatz technische und betrieblich-organisatorische Vorkehrungen zur Staubbekämpfung auf Zufahrten und Plätzen sowie bei Materiallagern und beim Materialumschlag etc. getroffen. In Frage kommen z.B. Massnahmen wie Befeuchtungen, periodische Reinigungen sowie Geschwindigkeitsbeschränkungen etc.

Generell gibt die Lärmschutz-Verordnung (LSV) keine Grenzwerte für die Beurteilung von Baulärm vor. Obwohl es sich um eine temporäre Anlage handelt, werden für einen quantitativen Vergleich die Grenzwerte für permanente Anlagen gemäss Anhang 6 LSV (Belastungsgrenzwerte für Industrie- und Gewerbelärm) aufgeführt. Da es sich beim Bohrbetrieb um neue Anlagen handelt, sind im ca. 850 m entfernten, südlich gelegenen Wohnhaus des Landwirtschaftsbetriebs "Radhof" (Lärmempfindlichkeitsstufe III) entsprechende Planungswerte einzuhalten.

Die Planungswerte (PW) des Beurteilungspegels Lr in dB(A) für die Empfindlichkeitsstufe III sind:

- Tags (7:00 19:00 Uhr) 60 dB(A)
- Nachts (19:00 7:00 Uhr) 50 dB(A)

Auch in den Auflagen für die Sondierbohrung Benken (Macek & Gassler 2001) wurden für die Betrachtung der Lärmimmissionen die Planungswerte von 60 dB(A) tagsüber und 50 dB(A) während der Nacht für die relevanten lärmempfindlichen Räume angesetzt. Dies entspricht den Immissionsgrenzwerten (IGW) des Beurteilungspegels Lr in dB(A) der Lärmschutz-Verordnung (Anhang 6 LSV).

5.10 Telekommunikation

Für die Sicherstellung von Telekommunikation und Internet wird ein Anschluss an das bestehende Trassee der Swisscom zur Schiessanlage vorgesehen. Es ist zu prüfen, ob dafür auf den ersten 150 m eine bestehende Leitungstrasse des EKZ genutzt werden kann. Im Container der Projektleitung wird ein Hotspot / WLAN-Accesspoint eingerichtet.

Sollte ein Anschluss an das Swisscom-Trassee nicht möglich sein, so ist die Telekommunikation mittels mobiler Funknetze zu lösen.

5.11 Ausleuchtung

Die Ausleuchtung des Bohrplatzes und der Arbeitsbereiche liegt grundsätzlich in der Verantwortung der Bohrunternehmung und wird so umgesetzt, dass die Arbeitssicherheit nachts gewährleistet werden kann und gleichzeitig die Umgebung so wenig wie möglich durch Lichtimmissionen belastet wird. Die eingesetzten Leuchtmittel (Flutlichtscheinwerfer) sind so zu platzieren, dass sie zielgerichtet nur den Arbeitsbereich ausleuchten.

Die Lichtverschmutzung der Umgebung ist gegebenenfalls mit geeigneten Abschirmmitteln und standortgerechter Ausrichtung zu verhindern (vgl. Fig. 5.8). Ein Einsatz von LED-Leuchtmitteln wird dabei als sinnvoll erachtet. Die SN-Norm 586 491 "Lichtemissionen im Aussenraum" (SIA 2013) ist einzuhalten.

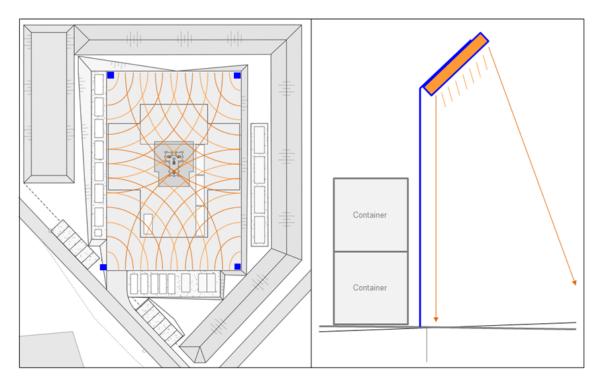


Fig. 5.8: Beispielhafte Ausleuchtung des Arbeitsbereichs für den Bohrplatz (Leuchte mit Wirkungsbereich).

5.12 Rekultivierung

Nach Abschluss der Betriebsphase wird die befestigte Bohrplatzfläche mit den Nebenanlagen aufgehoben, die eingebrachten Fremdmaterialien wie Kieskoffer, Bitumenbeläge und Betonfundamente (Lastplatten seitlich des Bohrkellers; vgl. Schemaschnitte A–A und B–B in Beilage 9) werden entfernt und die Werkleitungen teilweise rückgebaut. Mit den Rekultivierungsarbeiten wird die beanspruchte Fläche wieder so hergerichtet, dass die landwirtschaftliche Nutzung ohne Ertragseinbussen fortgeführt werden kann. Vor Baubeginn wird ein Bodenschutz- und Rekultivierungskonzept erarbeitet. Die Bauarbeiten, die Deponierung der Böden und die Rekultivierung werden mit einer bodenkundlichen Baubegleitung (BBB) vorgenommen und erfolgen in Absprache mit dem Eigentümer und Bewirtschafter.

Zurück bleiben bei Bedarf der Bohrkeller (vgl. Kap. 5.3), der durch eine Betonplatte mit integrierter Einstiegs- und Revisionsöffnung abgeschlossen wird, sowie eine gekofferte Zufahrt und Energie- resp. Telekommunikationsleitungen (vgl. Beilage 9). Die Zugangsöffnungen sind bei Schrägbohrungen in Richtung der gewählten Bohrachsen anzuordnen. Zur Vermeidung von Kulturschäden bei Kontrollgängen und Workover-Arbeiten bleibt ein befestigter Weg bestehen. Diese Zufahrt zum verbleibenden Bohrkeller und zu den Messeinrichtungen erfolgt direkt ab der Poststrasse über einen neu zu erstellenden Zufahrtsbereich (unbefestigter Weg) auf der Parzelle Kat.-Nr. 1148 mit einer Breite von rund 3.0 m.

Der Anschluss an die Niederspannung (NS) beim Schützenhaus Rheinau / Dachsen soll bestehen bleiben.

Zur Einspeisung und Fernüberwachung der Registriergeräte werden ein Elektroanschluss in Niederspannung und ein Telekommunikationsanschluss mit benötigter Bandbreite in den Bohrkeller geführt. Danach folgt unter Umständen eine mehrere Jahre bis Jahrzehnte dauernde Langzeitbeobachtungsphase in den Bohrlöchern.

6 Aspekte des Umwelt-, Natur- und Heimatschutzes und der Raumplanung

6.1 Interessenabwägung für erdwissenschaftliche Untersuchungen

Erdwissenschaftliche Untersuchungen mittels Sondierbohrungen dienen dazu, die Kenntnisse über den Untergrund im Hinblick auf ein geologisches Tiefenlager zu erweitern. Gemäss Art. 49 ff. KEG handelt es sich beim Bewilligungsverfahren von erdwissenschaftlichen Untersuchungen um ein Bundesverfahren (analog eines bundesrechtlichen Plangenehmigungsverfahrens). Die Bewilligungen werden gemäss KEG durch das UVEK erteilt, wenn:

- gemäss Art. 35 Abs. 2 lit. a die geplanten Untersuchungen geeignet sind, die erforderlichen Grundlagen für die spätere Beurteilung der Sicherheit eines geologischen Tiefenlagers zu erbringen, ohne die Eignung eines Standorts zu beeinträchtigen und
- gemäss Art. 35 Abs. 2 lit. b keine anderen von der Bundesgesetzgebung vorgesehenen Gründe, namentlich des Umweltschutzes, des Natur- und Heimatschutzes und der Raumplanung, entgegenstehen.

Für die konkrete Wahl des Bohrstandorts wird eine parzellengenaue Angabe und eine Begründung für die Wahl des Bohrstandorts vorausgesetzt (vgl. Art. 35 Abs. 2 lit. b KEG; Art. 3 Raumplanungsverordnung RPV). Die Bohrplatzevaluation geht von den Erfordernissen des Untersuchungszwecks aus (Geologie) und wird sodann nach den Zielen und Grundsätzen der Raumplanung sowie nach betrieblichen Kriterien eingegrenzt.

Dazu ist eine Interessenabwägung im Sinne von Art. 3 Abs. 1 lit. a RPV durchzuführen. Mittels Interessenabwägung soll aufzeigt werden:

- welche erheblichen privaten und öffentlichen Interessen berührt werden,
- welche möglichen Auswirkungen durch die Sondierbohrungen auf die ermittelten Interessen zu erwarten sind und
- welches Gewicht den berührten Interessen zugemessen wird.

6.2 Methodik der Auswahl des Bohrplatzes

Auf Basis der geologischen Verhältnisse (vgl. Kap. 6.2.1) wird der Betrachtungsraum für die Sondierbohrungen (Fig. 6.1) unter Berücksichtigung der in Kap. 6.2.2 genannten Zielsetzungen und des Untersuchungszwecks gemäss Art. 35 Abs. 2 lit a KEG ausgeschieden. Die gewählte Grösse des Betrachtungsraums ist ausreichend, um raumplanerisch und umweltrechtlich geeignete Bohrstandorte zu evaluieren. Im Rahmen eines schrittweisen Vorgehens werden eine oder mehrere geeignete Flächen für einen Sondierstandort eingegrenzt und ausgeschieden. In einem letzten Schritt wird die Optimierung der Standortevaluation aufgrund qualitativer und erschliessungstechnischer Kriterien vorgenommen.

Die Informationen zu räumlichen öffentlichen Interessen liegen auf kantonaler Ebene als öffentlich einsehbare Geodaten vor (z.B. Grundwasserschutzzonen auf der sogenannten Gewässerschutzkarte). Zur Durchführung einer Interessenabwägung werden die vorhandenen Geodaten in einem GIS-gestützten Auswahlverfahren verwendet, um auf Basis einer Negativplanung, d.h. durch den schrittweisen Ausschluss von raumplanerisch und umweltrechtlich ungeeigneten Flächen und einer anschliessenden qualitativen Beurteilung der Restflächen, mögliche Bohrplätze einzugrenzen.

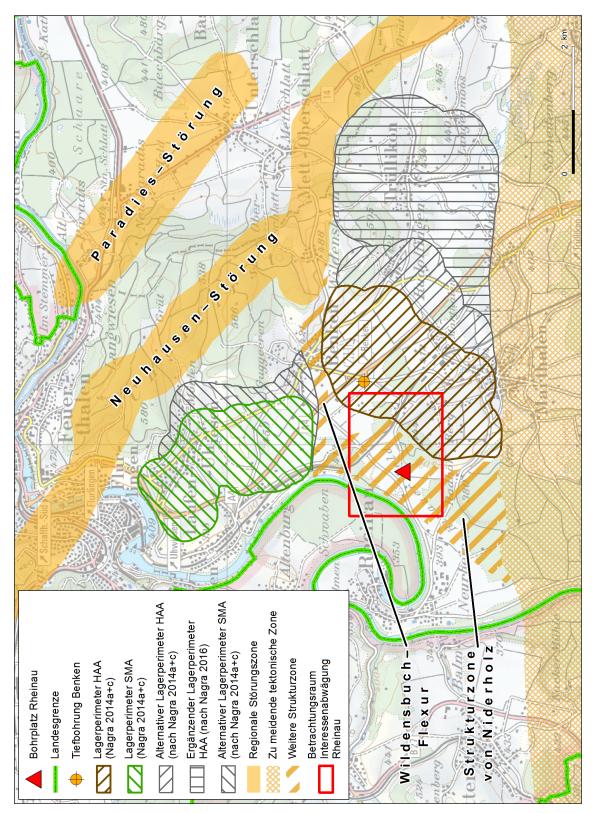


Fig. 6.1: Tektonische Situation und Lagerperimeter im Standortgebiet Zürich Nordost mit dem Bohrplatz Rheinau und dem Betrachtungsraum für die Interessenabwägung.

In die Bereiche der regionalen Störungszonen sind die entsprechenden Sicherheitsabstände zu den Störungszonen bereits integriert (Nagra 2014b).

Je nach Bedeutung des räumlichen öffentlichen Interesses wird eine Gewichtung der Kriterien vorgenommen. So werden zuerst raumplanerische und umweltrechtliche Voraussetzungen bestimmt, deren Vorliegen ohne Interessenabwägung im Einzelfall zum Ausschluss der Eignung von Bereichen für Bohrstandorte führt. Erst danach werden bautechnische oder qualitative Kriterien hinzugezogen. Dieses Verfahren entspricht einer umfassenden Interessenabwägung im Sinne der RPV und trägt der Bedingung nach Art. 35 Abs. 2 lit. b KEG Rechnung (vgl. Kap. 4.1 und 6.1).

Das konkrete Vorgehen dieses schrittweisen Verfahrens zur Eingrenzung der möglichen Bohrstandorte inklusive allfälliger Alternativstandorte wird nachfolgend erläutert.

6.2.1 Geologische Verhältnisse und geeignete Gebiete im Untergrund

Der mit Hilfe der Sondierbohrungen zu charakterisierende untertägige Bereich orientiert sich an den in SGT-E2 ausgewiesenen optimierten Lagerperimetern für das SMA- und das HAA-Lager (vgl. Fig. 6.1; Nagra 2014a). Nicht zu diesem Bereich gerechnet werden die regionalen Störungszonen, die konzeptionell zu meidenden tektonischen Zonen sowie die Strukturzone von Niderholz und die Wildensbuch-Flexur (vgl. Fig. 6.1). Um die Flexibilität betreffend optimale Lagertiefe im Hinblick auf Erosion, Dekompaktion und Bautechnik nicht zu stark einzuschränken, umfasst der zu charakterisierende Bereich auch alternative Lagerperimeter (vgl. Fig. 6.1; Nagra 2014a und c)^{10, 11}. Damit werden auch Zonen berücksichtigt, in welchen Wirtund Rahmengesteine in grösserer Tiefenlage vorkommen. Im Rahmen der Berichterstattung zur Nachforderung des ENSI zu SGT-E2 wurden zusätzlich ergänzende HAA-Lagerperimeter mit einer minimalen Tiefenlage des Tops Opalinuston von bis zu 600 m unter der lokalen Erosionsbasis und einer maximalen Tiefenlage der Lagerebene von ca. 900 m u.T. abgegrenzt (Nagra 2016)¹². Auch diese Lagerperimeter sind Teil des zu charakterisierenden Bereichs.

Um das untertägige Platzangebot durch die Sondierbohrungen nicht unnötig einzuschränken, aber trotzdem möglichst repräsentative Erkenntnisse zu gewinnen, wurden die Sondierstandorte im Randbereich des zu charakterisierenden Bereichs (HAA- und SMA-Lagerperimeter gemäss Fig. 6.1) platziert. Dort wo die Begrenzung der Lagerperimeter durch die Tiefenlage des Wirtgesteins bestimmt wird, wurde nach Möglichkeit ein Bohrplatz knapp ausserhalb des Lagerperimeters gesucht. Dort wo die Lagerperimeter durch ein in SGT-E2 ausgewiesenes regionales tektonisches Element, d.h. regionale Störungszonen und/oder tektonisch zu meidende Zonen, durch die Wildensbuch-Flexur oder die Strukturzone von Niderholz begrenzt werden, wurde nach einem Bohrplatz innerhalb – aber im Randbereich der Lagerperimeter – gesucht, um ein möglichst repräsentatives Gebiet zu charakterisieren (vgl. Nagra 2014c).

Nördlich der Wildensbuch-Flexur beinhaltet der zu charakterisierende Bereich folgende Lagerperimeter: Manuell optimierter Lagerperimeter für das SMA-Lager (Fall SMA-ZNO-mLE-r-manuell gemäss Nagra 2014a) und die östlich angrenzende Zone, in welcher der Opalinuston in vergleichsweise grösserer Tiefenlage liegt (Fall SMA-ZNO-mLE-u gemäss Nagra 2014a).

Südlich der Wildensbuch-Flexur beinhaltet der zu charakterisierende Bereich folgende Lagerperimeter: Manuell optimierter Lagerperimeter für das HAA-Lager (Fall HAA-ZNO-mLE-r-manuell gemäss Nagra 2014a) und östlich angrenzende Zone, in welcher der Opalinuston in grösserer Tiefenlage vorkommt (Fall HAA-ZNO-mLE-u gemäss Nagra 2014a).

Dieser ergänzende HAA-Lagerperimeter (Fall HAA-ZNO-aL10-r-manuell nach Nagra 2016) berücksichtigt auch Gebiete, in welchen der Opalinuston bis ca. 900 m u.T. liegt.

6.2.2 Zielsetzungen der Sondierbohrungen Rheinau

Der Sondierstandort Rheinau liegt im westlichen Teil des Standortgebiets ZNO. Im Gegensatz zu den übrigen Sondierbohrungen zielen die Sondierbohrungen Rheinau konkret darauf ab, Kenntnisse über die an den westlichen Teil des HAA-Lagerperimeters angrenzende Strukturzone von Niderholz zu gewinnen. Ausserdem dienen sie dazu, die Kenntnisse im westlichen Teil des HAA-Lagerperimeters zu vertiefen (vgl. Fig. 6.1). Es wurde ein Bohrstandort gesucht, welcher westlich des zentralen Westrands der HAA-Lagerperimeter und innerhalb der Strukturzone von Niderholz liegt.

Neben der Analyse von Tiefenlage, Mächtigkeit, Fazies und Eigenschaften von Wirt- und Rahmengesteinen und begrenzenden Tiefenaquiferen sollen mit Sondierbohrungen vom Bohrplatz Rheinau die Existenz bzw. Absenz von paläozoischen Sedimenten abgeklärt und die Temperatur- und Spannungsverhältnisse bis in den prä-mesozoischen Sockel hinein analysiert werden können. Zudem sollen Untersuchungen zu den bautechnischen Verhältnissen im Opalinuston und in den darüber liegenden Gesteinsschichten möglich sein.

Vom Bohrplatz aus sollen die interessierenden Gesteinseinheiten gegebenenfalls auch mit Schrägbohrungen, d.h. mit Winkeln von bis zu 45° von der Vertikalen aus, untersucht werden können, um bei Bedarf eine exemplarische Charakterisierung von steilstehenden Störungszonen zu ermöglichen. Es sollen Schrägbohrungen nach N, S, W und E möglich sein. Mit Sondierbohrungen an diesem Standort soll auch abgeklärt werden können, inwiefern im Bereich der Strukturzone von Niderholz mit einer kleinräumigen tektonischen Beanspruchung des Wirtgesteins zu rechnen ist.

6.2.3 Raum- und umweltplanerische Kriterien an der Oberfläche

Nach der räumlichen Eingrenzung des Betrachtungsraums soll der effektive Bohrstandort anhand einschränkender raumplanerischer und umweltrechtlicher Kriterien an der Oberfläche weiter eingegrenzt werden. Für diesen Prozess wurde ein Vorgehen in sieben Schritten entwickelt, mit dem ein geeigneter Bohrplatz ausgewählt wird, der sowohl den gesetzlichen raumplanerischen und umweltrechtlichen Kriterien als auch den technischen Vorgaben der Nagra entspricht. Die nachteiligen Auswirkungen auf Mensch, Landschaft und Umwelt sollen nach Möglichkeit vermieden bzw. gering gehalten werden.

Schritt 1 – Prüfung des Vorhandenseins von geeigneten Bauzonen

Gemäss Art. 22 Abs. 2 lit. a RPG sollen Bauten und Anlagen dem Zweck der Nutzungszone entsprechen. Für Bauten und Anlagen, welche für die Installation eines Bohrplatzes und die Durchführung von erdwissenschaftlichen Untersuchungen nötig sind, bedeutet dies, dass sie – falls möglich – in den Bauzonen zu platzieren sind. Im Vordergrund stehen hier freie Flächen, z.B. innerhalb von Gewerbe- und Industriezonen bzw. freie Bauflächen. Aus Gründen des Lärm- und Immissionsschutzes werden primär Gewerbe- und Industriezonen bevorzugt. Liegen innerhalb von Gewerbe- und Industriezonen für Standorte konkrete Bauabsichten (z.B. in Form von Gestaltungsplanungen oder Bauprojekten) vor, die mit der Nutzung als Bohrplatz zeitlich kollidieren, wird von diesen Standorten abgesehen. Dies deshalb, weil die Bohrstandorte – aufgrund der beantragten Geltungsdauer für die Bewilligung sowie für den möglichen Zeitraum der Bohrarbeiten – während rund 15 Jahren zur Verfügung stehen müssen.

Standorte für Sondierbohrungen sind dann aus wichtigen und objektiven Gründen in Analogie zu Art. 24 lit. a RPG auf einen Standort ausserhalb von Bauzonen angewiesen, wenn im Bereich des ermittelten Betrachtungsraums innerhalb der Bauzonen kein geeigneter Standort zur Verfü-

gung steht. Einem so ausserhalb der Bauzonen standortgebundenen Bohrplatz dürfen zudem entsprechend Art. 24 lit. b RPG keine überwiegenden Interessen entgegenstehen. Für die Wahl eines Bohrstandorts ausserhalb der Bauzonen ist eine Interessenabwägung im Rahmen von raumplanerischen und umweltrechtlichen Kriterien von zentraler Bedeutung.

Schritt 2 – Grundsätzlicher Ausschluss von Flächen aufgrund überwiegender raumplanerischer und umweltrechtlicher Interessen

Ausgehend von den Flächen der geologischen Betrachtungsräume wurden Gebiete als mögliche Standorte für einen Bohrplatz ausgeschlossen, die aufgrund raumplanerischer oder umweltrechtlicher Festsetzungen und Vorgaben bereits grundsätzlich ausser Betracht fallen. Es handelt sich hierbei um räumliche Elemente, welche aufgrund ihrer überwiegenden öffentlichen Interessen einen hohen Schutzstatus geniessen. Der hohe Schutzstatus verhindert, dass innerhalb dieser ausgeschiedenen Flächen Bauten und Anlagen in der geplanten Art erstellt werden dürfen, wenn dies nicht aus übergeordneten Gründen unerlässlich ist. Sie werden deswegen in diesem Verfahren als Ausschlusskriterien für die Standortwahl von potenziellen Bohrplätzen verwendet.

Auf den verschiedenen Stufen (Bundesinventar, Richtplan) sind grossflächige Landschaftsschutzelemente ausgeschieden. Das Kriterium Landschaftsschutz wird vorliegend nicht als Ausschlusskriterium sondern als qualitatives Kriterium eingestuft, da die eigentliche Bohrtätigkeit, welche eine gewisse Beeinträchtigung der Landschaft nach sich ziehen kann, zeitlich eng begrenzt ist (in der Regel maximal fünf Jahre).

Folgende Flächen werden bei der Auswahl eines Standorts ausgeschlossen:

- Objekte im Bundesinventar der schützenswerten Ortsbilder der Schweiz von nationaler Bedeutung (ISOS, gemäss Art. 5 NHG) und im Bundesinventar der historischen Verkehrswege der Schweiz (IVS, gemäss Art. 5 NHG)
- Biotope von nationaler Bedeutung (Art. 18a NHG: Hoch- und Übergangsmoore, Flachmoore, Auengebiete, Amphibienlaichgebiete sowie Trockenwiesen und -weiden)
- Wasser- und Zugvogelreservate von internationaler und nationaler Bedeutung (Art. 11 JSG)
- Wildtierkorridore von überregionaler Bedeutung (national)
- Nationalpärke (Art. 23f NHG)
- Waldareale (Art. 2 WaG)
- Grundwasserschutzzonen S1, S2 und S3 (Anhang 4, Art. 222 und 223 GSchV; Wegleitung Grundwasserschutz, BAFU 2004)
- Grundwasserschutzareale (Anhang 4, Art 23 GSchV)
- Oberirdische Gewässer und ihre Gewässerräume (Art. 36a GSchG, Art. 41c ff GSchV und § 15 ff HWSchV ZH)

Die aus Schritt 2 übrig gebliebenen Flächen werden in Schritt 3 weiter geprüft.

Schritt 3 – Ausschluss von Gebieten aufgrund kantonaler Vorgaben

Im Schritt 3 werden Flächen ausgeschlossen, welche durch kantonale Vorgaben geschützt sind. Kantonale Bewilligungen sind im Sinne des Konzentrationsprinzips nicht erforderlich, es gilt jedoch das kantonale Recht zu berücksichtigen. Dies betrifft folgende Flächen:

- Flächen, die gemäss § 203 PBG ZH als Objekte des Naturschutzes, des Denkmalschutzes oder des Ortsbildschutzes inventarisiert sind (nicht aber Objekte des Landschaftsschutzes, vgl. Schritt 2 sowie archäologische Zonen, vgl. Schritt 7)
- Kantonal ausgeschiedene Wildtierkorridore (vgl. § 23 lit. d PBG ZH, Art. 18 Abs. 1 NHG, Art. 1 Abs. 1 lit. a JSG)

Schritt 4 – Ausschluss von Gebieten aufgrund bautechnischer Vorgaben

Mindestgrösse

Ein Bohrplatz inklusive Installationsflächen muss eine Mindestgrösse von ca. 5'000 m² aufweisen, damit sowohl für die Installation des Bohrgeräts mit den entsprechenden notwendigen Aggregaten und Stellflächen für Container und Mulden als auch für Depotflächen (Aushub- und Humusdepots) genügend Platz vorhanden ist. Flächen, welche kleiner als die genannte Mindestgrösse sind, scheiden als potenzielle Bohrplätze aus. Dieses Kriterium wird in jedem der folgenden Schritte erneut angewandt, sodass Restflächen, die aufgrund ungenügender Grösse für einen Bohrplatz nicht in Frage kommen, systematisch eliminiert werden.

Hangneigung

Die Fläche des Bohrplatzes für das Errichten der Installationen sollte möglichst eben sein. Die Erstellung eines Bohrplatzes an Hängen mit einer Neigung > 15 % würde grossflächige Terrainveränderungen und erhebliche bauliche Massnahmen sowohl für den Bohrplatz als auch gegebenenfalls für die Strassenerschliessung mit sich bringen. Derartigen Bereichen fehlt folglich die notwendige Eignung.

Schritt 5 – Ausschluss von Gebieten aufgrund betrieblicher Vorgaben

Naturgefahren

Bohrplätze in Gefahrenzonen mit mittlerer bis erheblicher Gefährdung (blau und rot bezeichnete Flächen der kantonalen Gefahrenkarte) stellen ein erhebliches Sicherheitsrisiko für das anwesende Bau-, Bohr- und Forschungspersonal dar, welches unverhältnismässige Objektschutzmassnahmen (z.B. Hangsicherungsmassnahmen bei Rutschgefahr, Dammschüttungen bei Hochwassergefahr) nach sich ziehen würde. Für die anschliessende Langzeitbeobachtungsphase werden zudem sensible Messsensoren installiert, welche durch allfällige Bodenbewegungen oder Überschwemmungen gefährdet bzw. zerstört werden könnten. Aus diesen Gründen gelten Gefahrenzonen mit mittlerer bis erheblicher Gefährdung als weitere Ausschlusskriterien.

Überregionale Versorgungsleitungen

Überregionale Versorgungsleitungen wie Hochspannungs- und Gasleitungen sind standortgebundene Anlagen, welche von hohem öffentlichem Interesse und raumplanerisch festgesetzt sind (Richtplan). Wären sie durch einen Bohrplatz tangiert, müssten sie vorgängig umgelegt werden, was unter Umständen komplexe und langwierige Planungen und Bewilligungsverfahren zur Folge hätte. Aus diesem Grund ist bei der Standortwahl eines Bohrplatzes genügend

Abstand einzuhalten, sodass die Bohrinstallationen keine nachteiligen Auswirkungen auf die Anlagen haben. Gemäss Art. 13 Abs. 1 der Verordnung über den Schutz vor nichtionisierender Strahlung (NISV) müssen zudem die Immissionsgrenzwerte von Elektroleitungen überall eingehalten werden, wo sich Menschen permanent aufhalten können. Zum Schutz des Bau-, Bohrund wissenschaftlichen Personals vor dem um Frei- und Kabelleitungen entstehenden Magnetfeld ($> 1~\mu T$) ist deshalb ein ausreichender Abstand zu den jeweiligen Leitungen einzuhalten.

Für Elektroleitungen (Frei- und Kabelleitungen) sind folgende Minimalabstände einzuhalten ¹³:

- Höchstspannungsleitungen (220 380 kV): 50 m
- Hochspannungsleitungen (110 150 kV): 20 m
- Mittelspannungsleitungen (10 16 kV): 10 m
- Kabelleitungen (bis 110 kV): 6 m

Ausserdem gelten die Richtlinien für den Einsatz von Kranen und Baumaschinen im Bereich elektrischer Freileitungen (SUVA 2011) und die darin erwähnten Vorschriften sinngemäss.

Aus betrieblicher und bautechnischer Sicherheit ist es gemäss Art. 12 Abs. 1 Verordnung über Sicherheitsvorschriften für Rohrleitungsanlagen (RLSV) erforderlich, einen Sicherheitsabstand von mindestens 10 m zu Gasleitungen mit einem Druck von bis zu 2.5 MPa nicht zu unterschreiten.

Sollten Fernwärmeleitungen, Telefon- und Glasfaserleitungen oder Trinkwasserleitungen im Bereich eines möglichen Bohrplatzes liegen, so würden diese bei der Einrichtung des Bohrplatzes verlegt werden. Somit sind sie für die Eingrenzung der möglichen Bohrplätze nicht relevant.

Hauptverkehrsachsen

Bauten und Anlagen dürfen nur dann innerhalb der Baulinien und Projektierungszonen von Hauptverkehrsachsen wie Nationalstrassen, Eisenbahnanlagen und Kantonsstrassen gebaut werden, wenn sie ganz oder überwiegend dem Betrieb der Verkehrsflächen dienen (vgl. Art. 23 NSG, Art. 18m EBG, § 265 PBG ZH). Bohrplätze dienen weder ganz noch überwiegend dem Bahn- bzw. Strassenbetrieb, weshalb sie ausserhalb der festgelegten Baulinien und Projektierungszonen zu platzieren sind.

Folgende beidseitigen, minimalen Abstände sind von den jeweiligen Verkehrsflächen einzuhalten:

- Kantons- und Gemeindestrassen: 6 m
- Nationalstrassen: 10 m
- Eisenbahnanlagen/Fahrleitung: In Abhängigkeit der Installation und der Höhe des Bohrgeräts (VÖV 2012)

Immissionsschutz – Lärm und Licht

Während der Betriebsphase ist an den gewählten Bohrplätzen mit einer mässigen Lärmbelastung der Umgebung zu rechnen. Gemäss Art. 41 LSV ist innerhalb von Wohnzonen (in der Regel Empfindlichkeitsstufe II, Gebäude mit lärmempfindlichen Räumen) kein störender

¹³ Abstand zur Einhaltung des Anlagegrenzwerts von 1 μT gemäss BAFU (2005).

Betrieb zulässig, weshalb Bohrplätze mit 24-h-Betrieb nicht in Wohnzonen platziert werden können. Der Bohrplatz gilt gemäss der LSV als neue Anlage, weswegen die Planungswerte eingehalten werden müssen. Anhang 6 LSV sieht vor, dass die Planungswerte innerhalb dieser Empfindlichkeitsstufe II tagsüber nicht über 55 dB(A) liegen und insbesondere nachts 45 dB(A) nicht überschreiten.

Gemäss der Baulärm-Richtlinie des BAFU, Ziff. 2.2 (BAFU 2011) kann davon ausgegangen werden, dass der Abstand einer Baustelle mit lärmintensiven Arbeiten zu den nächstgelegenen Räumen mit lärmempfindlicher Nutzung (z.B. Wohnen) mindestens 600 m betragen muss, damit keinerlei Lärmschutzmassnahmen getroffen werden müssen. Beträgt der Abstand zwischen 600 und 300 m, so ist davon auszugehen, dass während den gängigen Arbeitszeiten (wochentags 7:00 – 12:00 Uhr und 13:00 – 19:00 Uhr) keine Lärmschutzmassnahmen notwendig sind. Beträgt der Abstand weniger als 300 m oder wird auch ausserhalb dieser Zeiten gearbeitet, sind spezifische Lärmschutzmassnahmen nötig.

Um störende Lärmimmissionen zu Wohnzonen (geschlossene Wohnbebauung) von vornherein zu minimieren bzw. zu vermeiden, wird für die Auswahl des Bohrplatzes eine 300 m-Pufferzone um Wohngebiete ausgeschieden, sodass nur ausserhalb von üblichen Arbeitszeiten gegebenenfalls technische Lärmschutzmassnahmen (z.B. Emissionsreduktion am Bohrgerät) getroffen werden müssen. Ist ein Minimalabstand von 300 m zum nächsten Wohngebiet nicht möglich, müssen zusätzliche bauliche Lärmschutzmassnahmen (vgl. Kap. 6.5.2) getroffen werden.

Ein 24-h-Bohrbetrieb erfordert in der Dämmerung und nachts eine Beleuchtung des Bohrplatzes, was zu Lichtimmissionen führen kann. (vgl. Kap. 5.11). Durch den 300 m-Puffer um Wohnzonen ist der Schutz vor Lichtimmissionen für die betroffene Wohnbevölkerung in der Regel gewährleistet. Die Ausleuchtung des Bohrplatzes wird in Kap. 5.11 erläutert, durch einen zielgerichteten Einsatz der Scheinwerfer wird lediglich der notwendige Arbeitsbereich optimal ausgeleuchtet und Streulicht vermieden, sodass schädliche Auswirkungen auf die nachtaktive Fauna auf ein Mindestmass reduziert werden.

Schritt 6 – Evaluation von Sonderflächen

Zusätzlich zu den raumplanerischen, den bautechnischen und den betrieblichen Ausschlusskriterien (Schritte 1 bis 5), gibt es Standorteigenschaften oder Nutzungen, welche das Erstellen eines Bohrplatzes erschweren. Zudem können aktuelle Landnutzungen durch das Errichten eines Bohrplatzes wesentlich eingeschränkt oder gar verunmöglicht werden. Aus diesem Grund sind die nachstehenden Flächen für Bohrplätze zu meiden:

- Ablagerungs-, Betriebs- und Unfallstandorte im Sinne der Altlastenverordnung (AltlV) gilt es aus technischer und finanzieller Sicht und aus Gründen der Arbeitssicherheit zu meiden. Das Erstellen eines Bohrplatzes auf einem belasteten Standort erfordert eine vorgängige Untersuchung und gegebenenfalls eine Sanierung (Art. 3 AltlV).
- Bohrplätze im Bereich von **Flächen mit Spezialkulturen** (Obstgärten, Rebberge, Familiengärten) könnten eine langfristige Beeinträchtigung der Flächen bzw. der Bepflanzungen nach sich ziehen und werden bei der Auswahl ausgeschieden.
- Freizeit- und Sportflächen (z.B. Golfplätze, Sportanlagen) würden durch das Erstellen eines Bohrplatzes in ihrer Nutzung wesentlich eingeschränkt. Sie sind zudem in der Regel von Bedeutung für die Öffentlichkeit.

Die Restflächen, welche nach der Eingrenzung durch die Schritte 1 bis 6 übrig bleiben, werden anschliessend anhand qualitativer Kriterien verglichen und auf ihre Eignung als mögliche Standorte für einen Bohrplatz geprüft.

Schritt 7 – Optimierung der Standortevaluation

Die weiteren Kriterien für die Optimierung der Standortevaluation beruhen auf gesetzlichen Vorgaben (z.B. Fruchtfolgeflächen, Landschaftsschutz etc.) und praktischen Überlegungen. Sie stellen indessen keine Ausschlussgründe dar, namentlich weil die Flächenbeanspruchung eine temporäre ist. Vielmehr geht es darum, die Standortwahl nach Abzug der Ausschlussgebiete zu optimieren (vgl. Kap. 6.3.7).

Folgende qualitative Kriterien (ohne Rangfolge) werden grundsätzlich bei der Abwägung der hier möglichen Flächen für Sondierstandorte einbezogen:

- Sind Transportwege / Zufahrten zu den potenziellen Bohrplätzen vorhanden?
- Ist eine Erschliessung des potenziellen Bohrplatzes mit Wasser/Abwasser und Strom vorhanden?
- Falls der potenzielle Bohrplatz mit Strassen und Werkleitungen erschlossen ist, reichen deren Dimensionierungen aus oder sind für die Bau- und Betriebsphase Anpassungen nötig (z.B. Ausbau der Zufahrtsstrassen auf mindestens 4 m Breite)?
- Tangiert der potenzielle Bohrplatz eine national/kantonal geschützte Landschaft bzw. Landschaftsschutzobjekte (gemäss Art. 20 PäV sowie Art. 5 und 6 NHG)?
- Tangiert der potenzielle Bohrplatz eine Zone mit Materialabbau/-gewinnung (Kiesgruben, Steinbrüche)? Benachteiligt dies die Standortwahl oder gibt es mögliche Synergien?
- Tangiert der potenzielle Bohrplatz eine hochwertige Fruchtfolgefläche (Nutzungseignungsklassen 1 − 5)?
- Bestehen besondere Grundwasserverhältnisse?
- Sind potenzielle Standorte von Naturgefahren (gelbe und gelb/weisse Flächen, geringe Gefährdung bis Restgefährdung) betroffen? Kann die Arbeitssicherheit durch einfache Objektschutzmassnahmen gewährleistet werden?
- Liegt der Bohrplatz innerhalb einer archäologischen Zone? Archäologische Funde können zu einem Baustopp und wesentlichen baulichen Verzögerungen führen.

Im Rahmen der Einzelfallprüfung werden die übrig gebliebenen Flächen anhand der qualitativen Kriterien bewertet und mit dem ausgewählten Bohrplatz verglichen. Anhand dieser Kriterien und im Vergleich ist aufzuzeigen, dass der gewählte Bohrplatz Vorteile gegenüber Bohrplätzen in den Vergleichsräumen aufweist.

Eingrenzung und Auswahl des Bohrplatzes

Anhand der oben beschriebenen Methodik mit den einzelnen Schritten zur Eingrenzung eines potenziellen Bohrplatzes wird im Folgenden mit Hilfe des bereits erwähnten GIS-gestützten Verfahrens eine Auswahl vorgenommen. Die resultierenden räumlichen Einschränkungen werden jeweils graphisch dargestellt und im Anschluss erläutert.

Aufgrund der vorgegebenen Zielsetzung, die Strukturzone von Niderholz zu untersuchen, scheiden die Gebiete des Lagerperimeters sowie die Räume zwischen der Strukturzone von Niderholz und dem Lagerperimeter als potenzielle Bohrplätze aus. Die Fläche westlich des Rheins betrifft deutsches Staatsgebiet und kommt daher für einen Bohrplatz nicht in Frage.

6.3.1 Schritt 1 – Bauzonen

Wie auf Fig. 6.2 abgebildet, befinden sich keine Bauzonen im Betrachtungsraum für die Interessenabwägung des Bohrplatzes der Sondierbohrungen Rheinau. Eine Anordnung des Bohrplatzes innerhalb einer Bauzone ist somit nicht möglich.

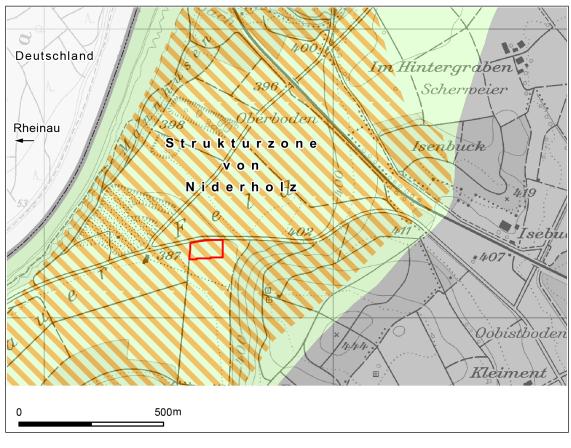


Fig. 6.2: Darstellung von Bauzonen.

6.3.2 Schritt 2 – Raum- und umweltplanerische Kriterien

Im Westen des Bohrplatzes der Sondierbohrungen Rheinau befindet sich ein grossflächiges Grundwasserschutzareal des Kantons Zürichs (vgl. Fig. 6.3). Im südlichen Randbereich des Betrachtungsraums liegt die Trink- und Brauchwasserfassung "Seewerben", welche mit rechtskräftigen Grundwasserschutzzonen versehen ist (vgl. Kap. 6.5.5 und Fig. 6.9). Die Grundwasserschutzzonen sind aufgrund ihres Schutzstatus als Bohrplätze zu meiden.

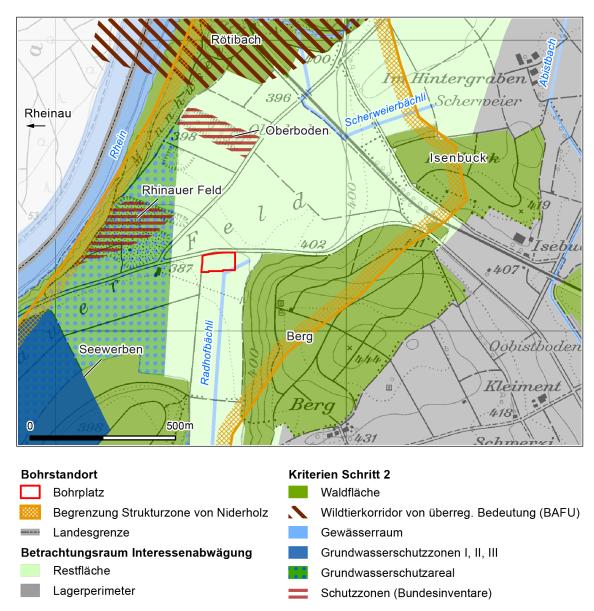


Fig. 6.3: Darstellung der raumplanerischen und umweltrechtlichen Kriterien.

Im nördlichen Bereich des Betrachtungsraums befindet sich das Waldstück "Rötibach", welches ausserdem als überregionaler Wildtierkorridor ausgeschieden ist. Südlich des Wildtierkorridors im Bereich "Oberboden" sind die Bundesinventare der Ampibienlaichgebiete von nationaler Bedeutung "Rhinauer Feld" und "Oberboden" verzeichnet. Im Osten des Bohrplatzes liegen die Waldgebiete "Isenbuck" und "Berg", die teilweise in den Lagerperimeter hineinreichen. Sämtliche Schutzgebiete sind vor Eingriffen zu schützen und scheiden als potenzielle Bohrstandorte aus.

Geprägt wird der Betrachtungsraum für die Interessenabwägung durch zwei kleine Gewässerläufe. So verlaufen das "Scherweierbächli" und das "Radhofbächli" direkt durch die Strukturzone von Niderholz (vgl. Fig. 6.3). Im Westen fliesst der Rhein. Der gemäss Art. 41c ff GSchV geltende Gewässerabstand ist zusätzlich zu den eigentlichen Bachläufen zu berücksichtigen und von sämtlichen Bauten und Anlagen freizuhalten.

Sämtliche Ausschlusskriterien von Schritt 2 werden in der nachfolgenden Fig. 6.4 (Schritt 3) als "ausgeschiedene Fläche" zusammengefasst und mit einer Fläche in schwarz-weissem Karo-Muster dargestellt. Alle Flächen, welche aufgrund von nachfolgenden Ausschlusskriterien wegfallen, werden jeweils dazu addiert.

6.3.3 Schritt 3 – Überprüfung kantonaler Vorgaben

Im nordwestlichen Bereich des Betrachtungsraums der Sondierbohrungen Rheinau sind die Kiesgrubenbiotope "Oberboden" und "Rhinauer Feld" verzeichnet, welche sowohl auf nationaler (vgl. Fig. 6.3) wie auch auf kantonaler Ebene geschützt sind (vgl. Fig. 6.4). Weiter ist auch ein Trockenstandort entlang des Bahndamms nordöstlich der Flure "Oberboden" eingetragen. Alle kantonalen Schutzgebiete sind als Bohrplätze zu meiden.

Der regionale Wildtierkorridor ZH 32 verläuft im südlichen Bereich des Betrachtungsraums von Nordosten nach Südwesten. Ein historischer Verkehrsweg regionaler Bedeutung verläuft in derselben Richtung quer durch den Betrachtungsraum. Insbesondere der regionale Wildtierkorridor schränkt die Suche für mögliche Bohrplatzstandorte ein.

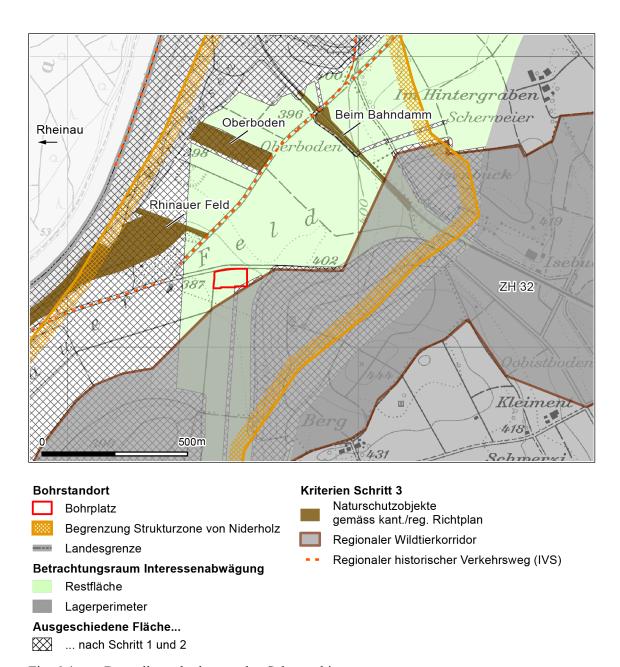


Fig. 6.4: Darstellung der kantonalen Schutzgebiete.

6.3.4 Schritt 4 – Bautechnische Vorgaben

Der Betrachtungsraum für die Interessenabwägung wird durch Moränen und spätglaziale Rückzugsschotter der Würmeiszeit sowie durch die Flussschlingen des Rheins mit seinen Terrassen charakterisiert. So sind Geländeneigungen mit mehr als 15 % im Bereich des Westhangs des "Bergholz" sowie entlang der Würmterrasse des Rheins zu finden. Steilere Geländeneigungen als 15 % sind auch innerhalb der Kiesgruben im "Rinauer Feld" verzeichnet (vgl. Fig. 6.5). Da sowohl der Bohrplatz als auch die Zufahrtsstrassen aus technischen Gründen möglichst eben gelegen sein sollten, würden Flächen in steilem Gelände eine entsprechend grosse Geländeanpassung in Verbindung mit einem grossen Flächenbedarf nach sich ziehen. Dies ist nicht im

Sinne der Schonung der Landschaft gemäss Art. 3 Abs. 2 RPG. Folglich scheiden solche Flächen aufgrund ihrer bautechnisch ungünstigen Eigenschaften als mögliche Bohrplatzstandorte aus.

Kleinere Restflächen werden auf die benötigte Mindestgrösse für einen Bohrplatz von minimal 5'000 m² geprüft und bei Nichterreichen ausgeschieden (vgl. Fig. 6.5).

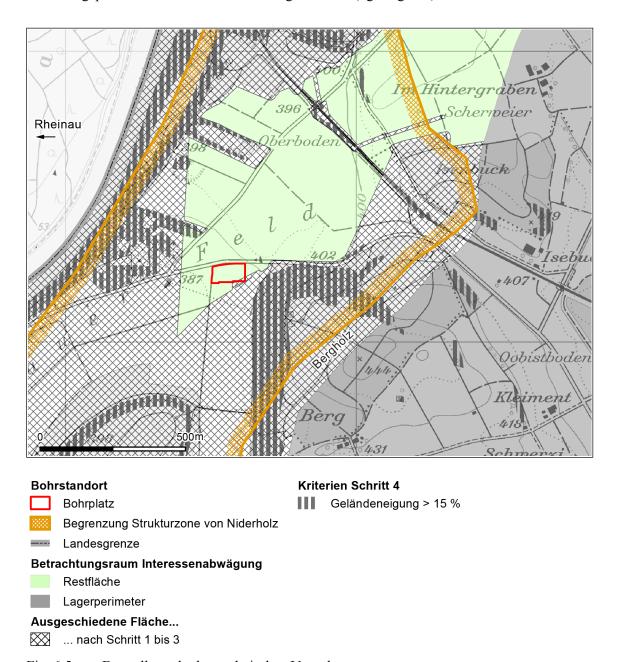


Fig. 6.5: Darstellung der bautechnischen Vorgaben.

6.3.5 Schritt 5 – Betriebliche Vorgaben

Anforderungen an betriebliche Vorgaben enthalten vor allem Abstände zu Wohngebieten aufgrund von Lärmschutzüberlegungen, Sicherheitsabstände um verschiedene Leitungen (Frei- und Kabelleitungen, Gasleitungen, Verkehrsinfrastruktur) sowie eine genaue Betrachtung allfälliger Naturgefahren, die den Betrieb auf einem möglichen Bohrplatz gefährden könnten.

Der Lärmschutzpuffer von 300 m um das nächstgelegene Wohnquartier "Schilling" hat keinen Einfluss auf die Interessenabwägung, da er im Lagerperimeter liegt und damit ausserhalb der Strukturzone von Niderholz. Dasselbe gilt für die Gasleitung im Osten des Betrachtungsraums (vgl. Fig. 6.6).

Diverse Versorgungsleitungen verbinden die oben aufgeführten Gemeinden miteinander, diese Flächen wie auch die Flächen des Hauptverkehrsnetzes (sowohl Strasse als auch Eisenbahn) stehen nicht als mögliche Bohrplätze zur Verfügung. Quer durch die Strukturzone von Niderholz ziehen sich die Bahnlinie Winterthur – Schaffhausen, die Kantonsstrasse RVS 532 (Poststrasse) und die Kantonsstrasse RVS 538 sowie verschiedene Frei- und Kabelleitungen (vgl. Fig. 6.6). Zu den Frei- und Kabelleitungen muss gemäss Art. 13 Abs. 1 NISV ein Sicherheitsabstand eingehalten werden. Diese Flächen, wie auch die Flächen des Hauptverkehrsnetzes stehen nicht als mögliche Bohrplätze zur Verfügung.

Eine Beurteilung der Naturgefahren um den Standort der Sondierbohrungen Rheinau ist nicht möglich, da sich das Gebiet ausserhalb des kartierten Bereichs der Gemeinde Rheinau befindet. Die Gefahrenhinweiskarte des Kantons Zürich weist für kleine Bereiche der südwestlichen Hänge der Flure "Berg" sowie für Uferbereiche am westlichen Rand des Betrachtungsraums kleinflächige mögliche Gefahrenzonen (Sturzprozesse) aus (vgl. Fig. 6.12). Diese befinden sich jedoch ausserhalb der Restflächen der Interessenabwägung und schränken die Standortwahl nicht weiter ein.

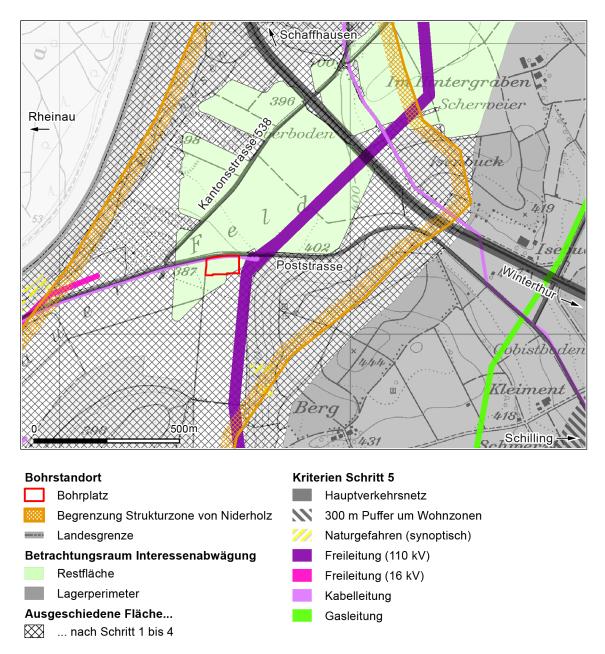


Fig. 6.6: Darstellung der betrieblichen Vorgaben.

6.3.6 Schritt 6 – Evaluation von Sonderflächen

Die Prüfung auf belastete Standorte gemäss dem Kataster der belasteten Standorte (KbS) des Kantons Zürich ergibt für den Betrachtungsraum der Sondierbohrungen Rheinau weitere Einschränkungen (vgl. Fig. 6.7). An zahlreichen Standorten innerhalb des Betrachtungsraums wurde während Jahrzehnten Kies abgebaut und die so entstandenen Kiesgruben im Anschluss wieder mit Materialien verschiedener Herkunft (Aushub, Hauskehricht, Bauschutt und Reststoffe) aufgefüllt. Diese Ablagerungsstandorte sind im KbS verzeichnet und stehen für die Umsetzung eines Bohrplatzes für Sondierbohrungen aufgrund ihrer allfälligen chemischen Belastung nicht zur Verfügung.

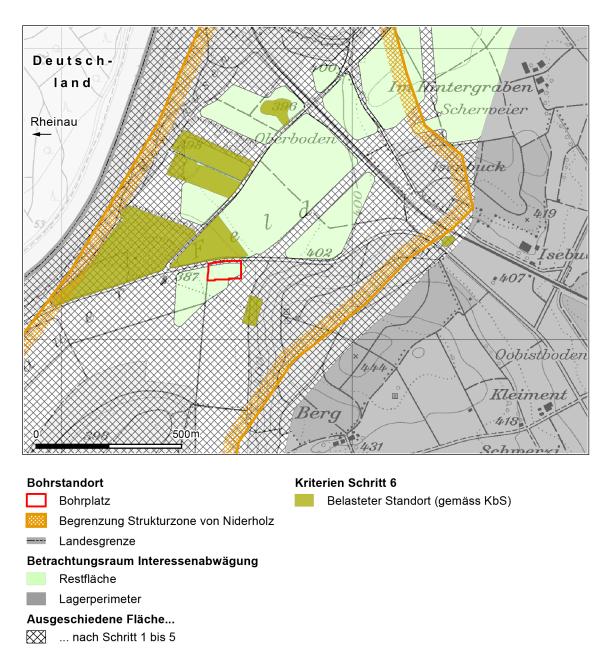


Fig. 6.7: Darstellung der Sonderflächen.

6.3.7 Schritt 7 – Qualitative Beurteilung der Restflächen

Nach dem GIS-Daten-Verschnitt bleiben die Räume "Rinauerfeld" (mit dem geplanten Bohrplatz Rheinau), "Im Hintergraben", "Oberboden" und "Isenbuck" übrig (vgl. Fig. 6.8, gelbe Kreise). Diese werden im Folgenden nach weiteren qualitativen raumplanerischen und umweltrechtlichen Kriterien auf ihre Eignung hin untersucht. Die Kriterien und deren Wertung sind einander tabellarisch gegenübergestellt (vgl. Tab. 6.1).

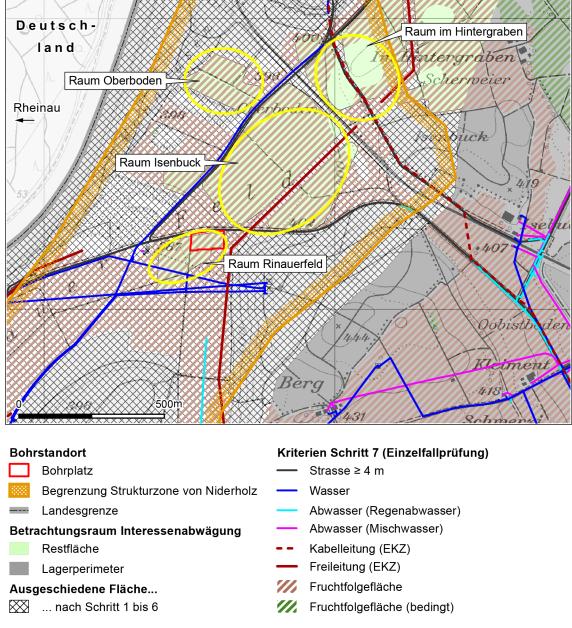


Fig. 6.8: Darstellung einzelner qualitativer Kriterien der Standortbeurteilung.

Generell stellt die Erschliessung eines Bohrplatzes mit Verkehrswegen, Strom, Wasser und Abwasser eine grosse Herausforderung für die Erstellung eines Bohrplatzes dar. Der Betrachtungsraum für die Interessenabwägung Rheinau ist durch die Kantonsstrassen RVS 538 und RVS 532 bzw. diverse Gemeindestrassen gut erschlossen. Ab dort zweigen jedoch häufig nur

Landwirtschaftswege ab, die mit einer Ausbaubreite von weniger als 4 m zu schmal sind für die Zufahrt zu einem Bohrplatz. Sämtliche Vergleichsräume liegen entlang der Kantons- oder Gemeindestrassen, die gut ausgebaut sind, und sind somit verkehrstechnisch gut erschlossen. Aufgrund des häufig parallelen Verlaufs der Werkleitungen zu diesen Strassen sind die direkt an die Verkehrsachsen angrenzenden Parzellen meist ebenfalls gut erschlossen, sofern Bohrplätze entlang oder nahe der Verkehrsachsen gewählt würden.

Tab. 6.1: Qualitative Standortbeurteilung im Betrachtungsraum für die Interessenabwägung der Sondierbohrungen Rheinau.

Kriterium	Raum "Rinauerfeld" (Bohrplatz Rheinau)	Raum "Oberboden"	Raum "Isenbuck"	Raum "Im Hintergraben"
Erschliessung Strasse	Angrenzend an Kantonsstrasse RVS 532	Angrenzend an Kantonsstrasse RVS 538	Angrenzend an Isenbuckstrasse	Angrenzend an Isenbuck- bzw. Kantonsstrasse
Erschliessung Wasser / Strom	Anschlussdistanz ca. 110 m / Anschlussdistanz (16 kV-Freileitung) ca. 320 m	Anschlussdistanz ca. 40 m/Stroman- schluss (16 kv- Freileitung) ca. 500 m	Anschlussdistanz ca. 60 m / Anschlussdistanz (16 kV-Kabel- leitung) ca. 250 m	Anschlussdistanz ca. 100 m / Anschlussdistanz (16 kV-Kabel- leitung) ca. 250 m
Abwasser	Kein Anschluss	Kein Anschluss	Kein Anschluss	Kein Anschluss
Landschafts- schutz / Land- schaftsbild	Landschaftsförder- gebiet	Landschaftsförder- gebiet	Landschaftsförder- gebiet	Teilweise in Landschafts- fördergebiet
Nutzung (gemäss Nutzungseig- nungskarte Kanton Zürich)	FFF: Uneinge- schränkte Frucht- folge 1. /2. Güte	FFF: Uneingeschränkte Fruchtfolge 2. Güte	FFF: Getreidebetonte Fruchtfolge 1. /2. Güte.	FFF: Uneinge- schränkte Frucht- folge 2. Güte
Grundwasser	Gewässerschutz- bereich A _u	Gewässerschutz- bereich A _u	Teilweise in Gewässerschutz- bereich A _u	Teilweise in Gewässer- schutzbereich A _u
Oberirdische Gewässer	Radhofbächli (eindedolt, unter Bohrplatz)	Kein Oberflächen- gewässer	Scherweierbächli (eindolt)	Scherweierbächli (eindolt)
Naturschutz	Nahe reg. Wild- tierkorridor	Nahe nat. Amphibienschutzgebiet /Wildtierkorridor	Nahe kant. Natur- schutzgebiet	Keine geschützten Flächen
Abstand zu bewohnten Liegenschaften	850 m	ca. 900 m	ca. 600 m	ca. 600 m
Vorkommen von Neophyten	Keine Vorkommen	Goldrute im Amphibienschutz- gebiet "Ober- boden"	Goldrute im Bereich Bahn- damm	Goldrute im Bereich Bahn- damm

Für die Langzeitbeobachtung ist ein direkter Anschluss an das Niederspanungsnetz relevant, welcher in allen Räumen in einer Distanz von mindestens 600 – 900 m liegt.

Der Raum "Oberboden" weist zwar bezüglich Erschliessung gute Voraussetzungen auf, jedoch bezüglich der qualitativen Kriterien mehrere Nachteile. Einerseits liegt er direkt nördlich angrenzend an das gleichnamige nationale Amphibienschutzgebiet. Andererseits befindet er sich in unmittelbarer Nähe zum Rand des nationalen Wildtierkorridors. Der Bohrplatz würde im Raum "Oberboden" in Bezug auf die saisonalen Wanderbewegungen der Amphibien ein Hindernis auf deren Wanderroute darstellen und technische Massnahmen zum Schutz der Amphibien nach sich ziehen. Zusätzlich befindet sich der Raum "Oberboden" innerhalb des Gewässerschutzbereichs Au, in einem Gebiet mit geringer Grundwassermächtigkeit. Aufgrund besser geeigneter Alternativen wird der Raum "Oberboden" für eine weitere Evaluation nicht berücksichtigt.

Die Räume "Isenbuck" und "Im Hintergraben" weisen bezüglich Verkehrs- und Energieerschliessung ähnliche Verhältnisse auf. Beide Räume liegen nur noch im Randbereich bekannter Grundwassergebiete. Der Raum "Isenbuck" grenz an ein kantonales Naturschutzobjekt sowie an das Amphibienlaichgebiet "Rhinauer Feld". Aufgrund der Nähe zu Naturschutzgebieten wird der Raum "Isenbuck" nicht berücksichtigt.

Der Raum "Im Hintergraben" weist – abgesehen von Neophythen-Vorkommen (Goldrute) – nur wenige Nachteile für einen Bohrplatz auf. Im Zuge der Boden- und Rekultivierungsarbeiten müsste sichergestellt werden, dass vorhandene Goldrutenbestände eliminiert und sicherlich nicht in unkontaminierte Bereiche verschleppt würden. Weil Goldrutenschnitt und -wurzeln von Hand entfernt und verbrannt werden müssen, um dies erreichen zu können, ist mit einem beträchtlichen Zusatzaufwand zu rechnen. Da ein Vergleichsraum ohne Neophythen-Problem zur Verfügung steht, wird vom Raum "Im Hinter graben" abgesehen.

Der Raum "Rinauerfeld" mit dem geplanten Bohrplatz der Sondierbohrungen Rheinau liegt direkt an der Kantonsstrasse RVS 532 und ist somit optimal erschlossen. Von Vorteil ist zudem, dass die Einfahrt zum geplanten Bohrplatz bereits für die Nutzung der südlich gelegenen Kiesgrube ausgebaut wurde. Im Vergleich zu den Alternativräumen könnte der Raum ohne grossen Aufwand an die Wasser- und Stromversorgung angeschlossen werden und auch ein Niederspannungsanschluss ist in unmittelbarer Nähe beim westlich gelegenen Schützenhaus möglich. Bezüglich des Landschaftsschutzes kann festgehalten werden, dass in der Umgebung des geplanten Bohrplatzes das Landschaftsbild bereits durch den Kiesabbau beeinträchtigt ist.

Der oben stehende Vergleich zeigt, dass sich die Vergleichsräume bei den Einzelkriterien wenig unterscheiden. Der gewählte Bohrplatz im Raum "Rinauerfeld" hat jedoch in Bezug auf seine relativ einfache Erschliessung und die vorhandene Entfernung zu Schutz- bzw. Naturschutzgebieten Vorteile gegenüber den Vergleichsräumen. Er ist zudem der einzige Neophythen-freie Standort.

6.4 Relevanzmatrix des Bohrplatzes Rheinau

Die konkreten standortspezifischen, erheblichen öffentlichen Interessen des Umwelt-, Naturund Heimatschutzes sowie der Raumplanung, welche auf Bohrplatz der Sondierbohrungen Rheinau zutreffen, wurden in einer Relevanzmatrix (vgl. Tab. 6.2) zusammengefasst. Daraus wird ersichtlich, ob Interessen während der Bau-, Betriebs- oder Beobachtungsphase berührt werden.

Tab. 6.2: Relevanzmatrix der Umweltbereiche für die Bau-, Betriebs- und Beobachtungsphase des Bohrplatzes der Sondierbohrungen Rheinau.

Umweltbereiche	Bauphase	Betriebs- phase	Beobachtungs- phase
Luftreinhaltung	•	O 1)	0
Lärm	•	•	0
Lichtimmissionen	0	•	0
Erschütterungen	0	0	0
Grundwasser	•	•	0
Oberflächengewässer und aquatische Ökosysteme	•	0	0
Entwässerung des Bohrplatzes	•	•	0
Naturgefahren	0	0	0
Boden / Fruchtfolgeflächen	•	•	0
Altlasten	0	0	0
Abfälle, umweltgefährdende Stoffe	0	•	0
Umweltgefährdende Organismen	0	0	0
Wald	0	0	0
Flora, Fauna, Lebensräume	•	•	0
Landschaft und Ortsbild	0	•	0
Kulturdenkmäler, archäologische Stätten	•	0	0
Störfallvorsorge / Katastrophenschutz	0	0	0

Legende:

- O Irrelevant, keine Auswirkungen
- Auswirkungen relevant, Umweltaspekt im Detail behandelt
- Unter der Annahme, dass ein Stromanschluss an das Mittelspannungsnetz erfolgt (vgl. Kap. 5.8)

Die Bauphase umfasst die Erstellung und Erschliessung des Bohrplatzes inklusive Bau des Bohrkellers und der Fundation für das Bohrgerät. Während der Betriebsphase werden die Sondierbohrungen Zeihen abgeteuft und das Untersuchungsprogramm mit seinen Testarbeiten durchgeführt. Hierzu gehören auch der Abbruch der Fundamente, der Rückbau des Bohrplatzes sowie die Rekultivierungsarbeiten. Anschliessend beginnt die allfällige Langzeitbeobachtungsphase mit dem Betrieb des Bohrkellers und der Messeinrichtungen.

Nachfolgend werden die relevanten Interessen einzeln behandelt und – wo notwendig – entsprechende Schutzmassnahmen erläutert.

6.5 Raum- und umweltplanerische Charakterisierung des Bohrplatzes der Sondierbohrungen Rheinau

6.5.1 Luftreinhaltung

Während der Bau- und Betriebsphase kommen auf dem Bohrplatz der Sondierbohrungen Rheinau diverse mit Treibstoff betriebene Baumaschinen sowie das eigentliche Bohrgerät zum Einsatz. Es wird angestrebt, mit Hilfe einer temporären Trafostation einen Anschluss an das vorhandene Mittelspannungsnetz herzustellen, damit elektrisch-hydraulische Antriebe zum Einsatz kommen können und lediglich während der Betriebsphase ein Notstromaggregat aufgestellt werden muss (vgl. Kap. 5.8). Allfällige Zwischenlager von feinkörnigen Aushub- resp. Ausbruchmaterialien können zudem zu Staubbildung führen.

Massnahmen: Die zu ergreifenden Massnahmen zur Luftreinhaltung und Staubbekämpfung wurden unter Kap. 5.9 bereits erläutert.

6.5.2 Lärm

Das Bauprogramm ist so ausgerichtet, dass die durch Lärm entstehenden Beeinträchtigungen in unmittelbarer Nachbarschaft möglichst gering gehalten werden können.

Der Bohrplatz der Sondierbohrungen Rheinau befinden sich gemäss der Bau- und Zonenordnung der Gemeinde Rheinau (BZO; Gemeinde Rheinau 2012) in der Landwirtschaftszone, die der Lärmempfindlichkeitsstufe III zugeordnet ist. Ungefähr 190 m westlich des Bohrplatzes befindet sich das Schützenhaus von Rheinau, in welchem jedoch keine lärmempfindlichen Räume vorhanden sind.

Im direkten Umfeld des Bohrplatzes der Sondierbohrungen Rheinau befinden sich keine Wohngebäude. Das nächstgelegene bewohnte Gebäude ist der Landwirtschaftsbetrieb "Radhof" in einer Entfernung von ca. 850 m in südlicher Richtung. Die von der Anlage ausgehenden Lärmimmissionen auf die lärmempfindlichen Räume dieses Betriebs werden aufgrund des grossen Abstands als wenig störend eingeschätzt. Sie können jedoch nicht vorgängig berechnet werden, weil diese vom verwendeten Bohraggregat und den dazugehörigen Nebenaggregaten abhängen. Die Gesuchstellerin sichert die Einhaltung der Planungswerte gemäss Anhang 6 LSV (Industrieund Gewerbelärm) zu. Die Gesuchstellerin stellt die Lärmprognose und eine Aufstellung über allfällig getroffene Massnahmen der Aufsichtsbehörde vor Beginn der Bohrarbeiten zu.

Massnahmen: Um dem Vorsorgeprinzip gemäss Art. 11 USG Rechnung zu tragen, werden folgende Massnahmen ins Projekt integriert (ohne Rangfolge):

- Bei der Auswahl des Bohraggregats wird darauf geachtet, dass ein lärmarmes, dem aktuellen Stand der Technik entsprechendes Fabrikat zum Einsatz gelangt.
- Lärmintensive Arbeiten werden wenn vom Ablauf her möglich jeweils tagsüber ausgeführt.
- Die Einhausung von Antriebsmotoren (TopDrive) resp. Spülpumpen sowie das Anbringen von Dämmmatten an beweglichen Teilen bzw. am Antrieb werden optional vorgesehen.
- Seitens der Gesuchstellerin wird eine Anlaufstelle für mögliche eingehende Beschwerden geschaffen.

Zeigt sich im laufenden Betrieb, dass die Planungswerte trotz der obigen Massnahmen nicht eingehalten werden, sind auf dem Aushubdepot Lärmschutzwände zu erstellen und/oder sind die auf Bohrplatzniveau stehenden Antriebsmotoren mit entsprechenden Schallschutzmassnahmen zu dämmen, so dass eine Überschreitung der Planungswerte ausgeschlossen wird.

Vom Bohrunternehmer und seinen Subunternehmern sowie sämtlichen Zulieferfirmen werden alle Massnahmen der Stufe C entsprechend dem Massnahmenkatalog der Baulärm-Richtlinie (BLR, BAFU 2011) gefordert.

6.5.3 Lichtimmissionen

Während der Betriebsphase ist ein 24-h-Bohrbetrieb vorgesehen. Eine Ausleuchtung des Bohrplatzes ist dazu unumgänglich. Sowohl während der Bau- als auch während der Beobachtungsphase sind keine Beleuchtungsmassnahmen nötig, da alle Arbeiten während des Tags ausgeführt werden können.

Massnahmen: Bei der Ausleuchtung des Bohrplatzes wird darauf geachtet, dass die Leuchtquellen gezielt eingesetzt werden und nur den Arbeitsbereich ausleuchten (vgl. Kap. 5.11, Fig. 5.8). Zusätzlich schirmen die Aushub- und Humusdepots sowie die Containeranlagen die Umgebung des Bohrplatzes vor den Lichtimmissionen ab. Während der Betriebsphase ist deswegen mit minimalen Lichtimmissionen zu rechnen, welche auf die nachtaktive Fauna nur lokal und sehr begrenzte Auswirkungen haben.

6.5.4 Erschütterungen

Es wird in keiner Phase mit Erschütterungen gerechnet, sodass keine vorsorglichen Massnahmen bezüglich Einwirkungen auf Menschen und Gebäude nötig sind (vgl. Kap. 7.5). In jedem Fall ist jedoch die DIN-Norm 4150-2 bezüglich Erschütterungen im Bauwesen zu berücksichtigen (ISO DIN 4150-2 1999).

Es sind keine Massnahmen bezüglich Erschütterungen nötig.

6.5.5 Grundwasser

Der Bohrplatz der Sondierbohrung Rheinau liegt östlich der Ortschaft Rheinau zwischen zwei würmzeitlichen Moränenwallen (Eglisau-Lottstetten und Andelfingen/Kleinandelfingen). Der Untergrund besteht aus ca. 15 m mächtigen Terrassenschottern (vgl. Fig. 5.2 und Beilage 3).

Aufgrund der Untergrundbeschaffenheit und gemäss der Grundwasserkarte des Kantons Zürich ist mit einer geringen Grundwassermächtigkeit (< 2 m) im Bereich des Bohrplatzes zu rechnen (vgl. Fig. 6.10). Gebiete mit mittlerer bis grosser Grundwassermächtigkeit liegen ca. 150 m weiter westlich.

Gemäss der Gewässerschutzkarte des Kantons Zürich liegt der Bohrplatz im Gewässerschutzbereich Au (vgl. Fig. 6.9). Ungefähr 50 m vom Bohrplatz bzw. dem Humusdepot entfernt befindet sich entlang der Südseite der Kantonsstrasse eine Quellfassung (OPA-RQ143; Frank 1995) mit einem geschätzten Ertrag von ca. 30 l/min ohne zugewiesene Schutzzone oder bekannte Nutzungsart (vgl. Fig. 6.9). Rund 150 m westlich des Bohrplatzes, im Gebiet mit mittlerer bis grosser Grundwassermächtigkeit befindet sich das Grundwasserschutzareal von Rheinau (vgl. Fig. 6.3 und 6.10).

Massnahmen: Zum Schutz des westlich liegenden Grundwasserschutzareals und der östlich gelegenen ungenutzten Quellfassung (OPA-RQ143) sind eine Reihe baulicher Massnahmen geplant (vgl. Kap. 3.2, 5.7.3 und 7.2), sodass die Versickerung von grundwassergefährdenden Fluiden ausgeschlossen werden kann. Der vorhandene räumliche Abstand ermöglicht es ausserdem, im Notfall Massnahmen zur allfälligen Eindämmung oder Beseitigung von Verunreinigungen zu treffen.

Grundsätzlich dürfen Bauten und Anlagen gemäss Anhang 4 Art. 211 Abs. 2 GSchV nicht unter den mittleren Grundwasserspiegel eingebaut werden. Da der mittlere Grundwasserstand bisher nicht bekannt ist, muss dieser unter Umständen vorgängig erhoben werden (z.B. mittels Sondierungen). Je nach Grundwasserstandserhebung würde im Rahmen des Ausführungsprojekts der entsprechende Durchflussnachweis für den Bohrkeller erbracht, die nötige Auftriebssicherung bestimmt und das Konzept für die Trockenhaltung der projektierten Anlage ausgearbeitet werden.

Aufgrund der getroffenen Vorsichtsmassnahmen gemäss Kap. 5.7.3 können Verschmutzungen des oberflächennahen Grund- und Quellwassers während der Bohrarbeiten verhindert werden.

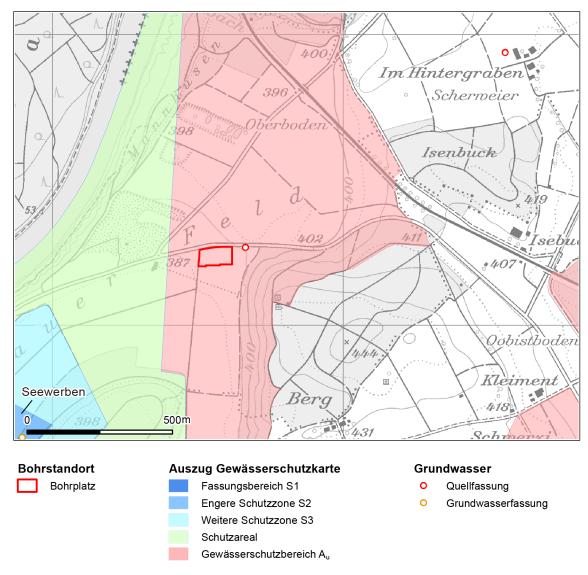


Fig. 6.9: Auszug aus der Gewässerschutzkarte des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.

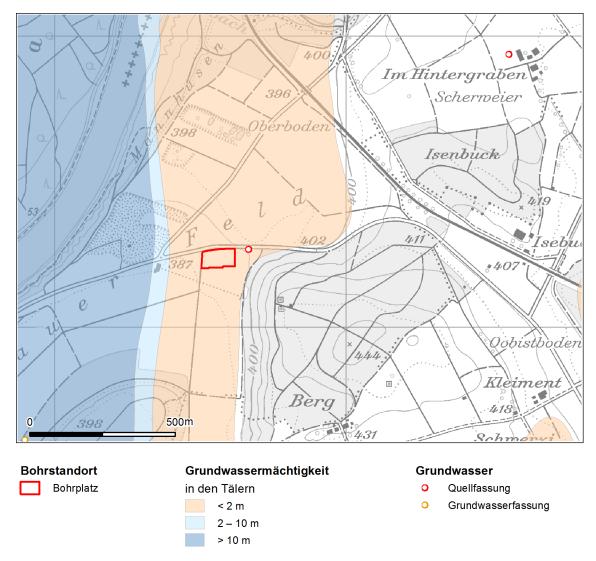


Fig. 6.10: Grundwasserverhältnisse (Mittelwasser) beim Standort der Sondierbohrungen Rheinau.

6.5.6 Oberflächengewässer und aquatische Ökosysteme

Direkt östlich bzw. südlich des Bohrplatzes der Sondierbohrungen Rheinau verläuft das eingedolte "Radhofbächli" in Richtung Süden zum "Radhof" (vgl. Fig. 6.11). Es handelt sich dabei um eine Entwässerungsleitung, die seitlich von mehreren Drainageleitungen aus dem Landwirtschaftsland gespeist wird.

Die geplanten baulichen Massnahmen zur Erstellung des Bohrplatzes überdecken ein kurzes Teilstück des eingedolten "Radhofbächlis". Es handelt sich dabei jedoch lediglich um das geplante Humusdepot, weswegen keine Eingriffe in den Untergrund erfolgen werden und keine direkten Eingriffe in das Gewässer geplant sind. Die Drainageleitung, welche unter dem Bohrkeller durchführt und dem "Radhofbächli" zuströmt, bleibt aufgrund genügender Tiefe bestehen.

Massnahmen: Während der Aushub- und Betonarbeiten zur Erstellung des Bohrplatzes, insbesondere während Nässeperioden, wird darauf geachtet, dass keine Trübstoffe oder Bojake via Drainageleitung in das "Radhofbächli" gelangen. Es sind zweckmässige Massnahmen zum Rückhalt solcher Baustellenabwässer zu treffen.

Falls wider Erwarten die dem Bohrplatz unterliegende Drainageleitung rückgebaut werden muss, wird das Rohrmaterial fachgerecht entsorgt (vgl. Kap. 6.5.11) und später im Rahmen der Rekultivierung (vgl. Kap. 5.12) wiederhergestellt.

Gemäss der Revitalisierungsplanung des Kantons Zürich (GIS-ZH 2016) wird der möglichen Revitalisierung des "Radhofbächlis" lediglich ein geringer Nutzen attestiert. Dennoch kann eine allfällige Revitalisierung nach Abschluss der Bauarbeiten für den Bohrplatz der Sondierbohrungen Rheinau bei Bedarf mit den Fachstellen des Kantons Zürich geprüft werden.

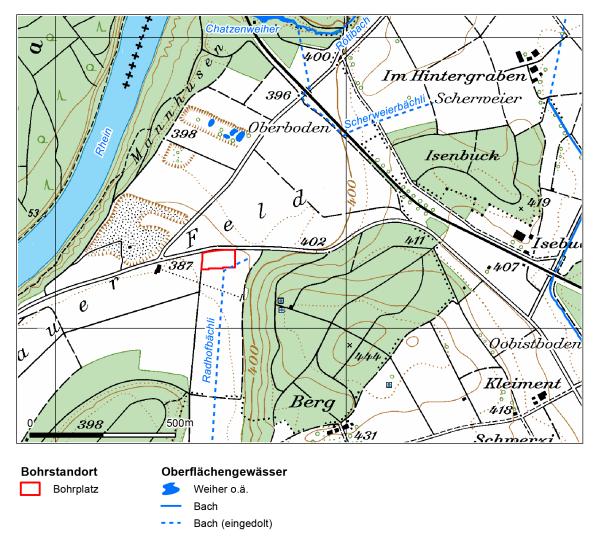


Fig. 6.11: Oberflächengewässer im Bereich des Standorts der Sondierbohrungen Rheinau.

6.5.7 Entwässerung des Bohrplatzes

Während der Bau- und Betriebsphase des Bohrplatzes der Sondierbohrungen Rheinau fallen Abwässer von diverser Herkunft an. Je nach Herkunft und Verschmutzungsgrad sind diese entsprechend zu entsorgen.

Massnahmen: Konkrete Entsorgungswege werden bereits in Kap. 5.7 genauer erläutert.

6.5.8 Naturgefahren

Naturgefahren sind kein eigentlicher Umweltbereich im Sinne einer Umweltprüfung. Trotzdem ist es sinnvoll, den Einfluss des Vorhabens auf Naturgefahren zu betrachten und zu beurteilen.

Der Bohrplatz liegt ausserhalb des bisher kartierten Bereichs der Naturgefahrenkarten. Für eine Beurteilung möglicher Risiken durch Naturgefahren wird daher auf die Gefahrenhinweiskarte zurückgegriffen. Diese weist für den Bohrplatz keine Risiken aus (vgl. Fig. 6.12).

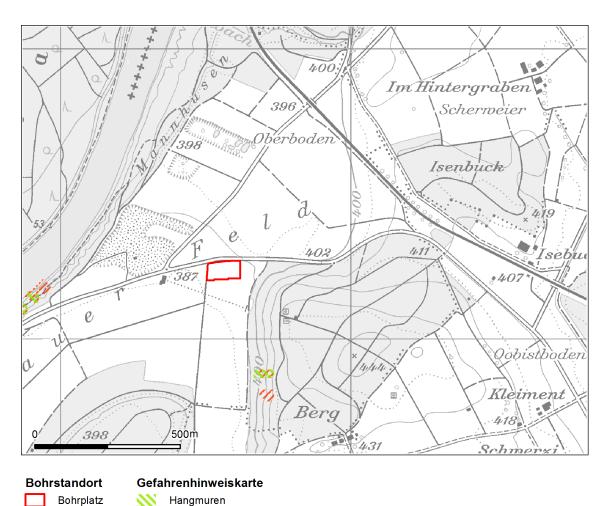


Fig. 6.12: Auszug aus der Gefahrenhinweiskarte des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.

Spontanrutschungen

Ungefähr 300 m südlich des Bohrplatzes sind bei den Westhängen des Gebiets "Berg" zwei Bereiche mit Hangmuren und Spontanrutschungen verzeichnet. Diese tangieren jedoch den Bohrplatz nicht. Das "Radhofbächli", das im Bereich des Bohrplatzes verläuft, ist auf der ganzen Strecke eingedolt und dürfte daher für den Bohrplatz keine Gefahr darstellen. Eventuell kann es im Bereich der Leitungen bei Starkniederschlägen aber zu Bodenvernässungen bzw. wassergesättigten Böden kommen.

Es sind keine Massnahmen bezüglich Naturgefahren nötig.

6.5.9 Boden/Fruchtfolgeflächen

Die Bohrplatzfläche befindet sich gemäss dem kantonalen Richtplan (Kt. Zürich 2015) und der Bau- und Zonenordnung der Gemeinde Rheinau (BZO; Gemeinde Rheinau 2012) in der Landwirtschaftszone und auf einer ausgewiesenen Fruchtfolgefläche (vgl. Fig. 6.13). Gemäss der Landwirtschaftlichen Nutzungseignungskarte des Kantons Zürich handelt es sich um Ackerbauland der 1. und 2. Güteklasse.

Der Ober- und Unterboden muss für die Erstellung des Bohrplatzes auf der gesamten benötigten Fläche abgetragen werden (vgl. Kap. 5.2). Das abgetragene Ober- und Unterbodenmaterial wird während des Bohrplatzbetriebs seitlich als separate Aushub- und Humusdepots aufgeschüttet (vgl. Beilage 5).

Vor Baubeginn wird ein Bodenschutz- und Rekultivierungskonzept erarbeitet, um die uneingeschränkte Nutzung von Fruchtfolgeflächen nach Abschluss der Arbeiten zu gewährleisten. Die Planung der Triage des Bodenaushubs, die Deponierung und Zwischenlagerung der Böden sowie die Rekultivierung werden durch eine bodenkundliche Baubegleitung (BBB) begleitet. Sämtliche Erdbauarbeiten werden gemäss dem Leitfaden Bodenschutz beim Bauen des BAFU (BAFU 2001, Häusler & Salm 2001) und den Schweizer Normen SN 640 582 (VSS 1999) sowie SN 640 583 Erdbau, Boden (VSS 2000) ausgeführt.

Der Bohrkeller und die Zufahrt bleiben anschliessend während der Langzeitbeobachtungsphase bestehen. Entsprechend wird diese Fläche von ca. 150 m² erst nach Abschluss der Beobachtungsphase rekultiviert (vgl. Beilage 9).

Massnahmen: Mit den vorgeschlagenen Massnahmen aus dem zu erstellenden Bodenschutzund Rekultivierungskonzept soll die Beeinträchtigung von Fruchtfolgeflächen minimiert werden. Das Konzept umfasst die durchzuführenden Erdarbeiten während des Baus, die Lagerung der Erdmaterialien und die anschliessende Rekultivierung des Bohrplatzes mit der Aufhebung der Depots (vgl. Kap. 5.12).

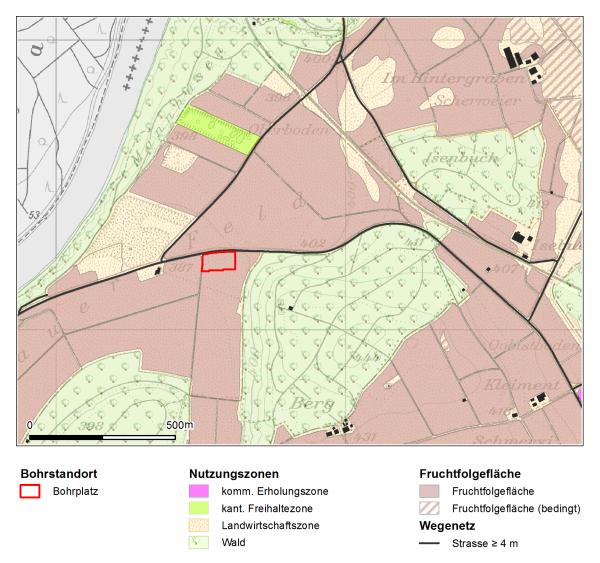


Fig. 6.13: Landnutzung im Bereich des Standorts der Sondierbohrungen Rheinau.

6.5.10 Altlasten

Der Bohrplatz befindet sich gemäss dem Kataster der belasteten Standorte (KbS) des Kantons Zürich ausserhalb von belasteten Flächen sowie ausserhalb des Prüfperimeters für Bodenverschiebungen (PBV; vgl. Fig. 6.14).

Unmittelbar nördlich der an den Bohrplatz angrenzenden Poststrasse befindet sich ein belasteter Ablagerungsstandort (Wiederauffüllung Materialentnahmestelle), für den gemäss dem KbS ein Untersuchungsbedarf aufgrund erhärteter Hinweise auf Reststoffe, Reaktorstoffe und Sonderabfälle (Öl oder Abfälle an der Oberfläche) besteht. Der Standort wird durch die Arbeiten im Rahmen der Bau- und Betriebsphase des Bohrplatzes jedoch nicht tangiert und mit belastetem Bodenmaterial ist auf der Fläche des Bohrplatzes nicht zu rechnen. Rund 120 m südöstlich des Bohrplatzes befindet sich der Kugelfang der Schiessanlage beim Schützenhaus in Rheinau. Der Standort gilt als belastet und sanierungsbedürftig, wird durch die Bau- und Betriebsphase des Bohrplatzes jedoch nicht tangiert.

Es sind keine Massnahmen notwendig.

Fig. 6.14: Auszug aus dem Kataster der belasteten Standorte (KbS) und dem Prüfperimeter für Bodenverschiebungen (PBV) des Kantons Zürich beim Standort der Sondierbohrungen Rheinau.

6.5.11 Abfälle, umweltgefährdende Stoffe

Auf dem Bohrplatz befinden sich keine Bauten oder Anlagen, welche im Rahmen der Bau- und Betriebsphase des Bohrplatzes abgebrochen oder rückgebaut werden müssen. Im Untergrund des geplanten Bohrplatzes befinden sich Drainageleitungen, welche für den Bau des Bohrplatzes bestehen bleiben, sofern sie tief genug im Untergrund liegen.

Während der Betriebsphase fällt jedoch Bohrschlamm an, welcher gegebenenfalls separat behandelt und entsorgt werden muss. Die Behandlung und Entsorgung von Abwässern (z.B. Bohrspülung) wird in Kap. 5.7 erläutert.

Massnahmen: Falls wider Erwarten Drainageleitungen rückgebaut werden müssen, sind die abgebrochenen Rohre einer Inertstoffdeponie (Typ B; vgl. Kap. 5.7.4) zuzuführen. Aushub, welcher für das Erstellen des Bohrkellers anfällt, wird soweit möglich wiederverwertet (Zwischenlager auf Aushubdepot, vgl. Kap. 5.2; Rekultivierung, vgl. Kap. 5.12) resp. wenn nötig auf den in Kap. 5.7.4 beschriebenen Entsorgungswegen entsorgt. Die Bohrspülung wird so lange wie möglich rezirkuliert und der dabei anfallende Bohrschlamm, wie in Kap. 5.7.3 detailliert beschrieben, von der Flüssigphase getrennt und fachgerecht entsorgt.

6.5.12 Umweltgefährdende Organismen

Gemäss der Neophyten-Kartierung des Kantons Zürich (GIS-ZH 2016) sind für den Bohrplatz sowie dessen nähere Umgebung keine Vorkommen von Neophyten verzeichnet.

Es sind keine Massnahmen vorgesehen.

6.5.13 Wald

Südwestlich des Bohrplatzes der Sondierbohrungen Rheinau liegt das Waldgebiet "Bergholz". Es weist einen Abstand von ca. 80 m zum Bohrplatz auf. Diese Waldfläche wird durch den Bau oder Betrieb des Bohrplatzes nicht tangiert und der gemäss § 262 Planungs- und Baugesetz (PBG ZH) geforderte Waldabstand von 30 m wird eingehalten.

Es sind keine Massnahmen zum Schutz des Walds erforderlich.

6.5.14 Flora, Fauna, Lebensräume

Die Fläche, auf welcher der Bohrplatz der Sondierbohrungen Rheinau zu liegen kommt, wird derzeit landwirtschaftlich intensiv genutzt. Aufgrund dieser bestehenden Nutzung sind im Bereich des eigentlichen Bohrplatzes wenig relevante Auswirkungen auf Flora und Fauna zu erwarten.

Nordwestlich bzw. nördlich des Bohrplatzes liegen zwei Gebiete, die beide zum national bedeutenden Amphibienlaichgebiet der Kiesgrube "Rhinauer Feld" und "Oberboden" gehören (Objekt-Nr. ZH726). Beide Bereiche liegen jedoch über 150 m vom Bohrplatz entfernt (vgl. Fig. 6.15) und werden durch den Bau oder den Betrieb des Bohrplatzes nicht beeinträchtigt.

Ungefähr 550 m nordöstlich des Bohrplatzes sind entlang der Bahnlinie beim Bahndamm zudem kantonal geschützte Trockenstandorte verzeichnet (Naturschutzobjekt Nr. 9). Diese werden durch den Bau oder den Betrieb des Bohrplatzes ebenfalls nicht beeinträchtigt.

Der Bohrplatz liegt randlich innerhalb einer nationalen Ausbreitungsachse für Wildtiere. Diese verläuft westlich des Bohrplatzes in Nord-Süd-Richtung vom "Schwabenholz" (D) über den Rhein ins Waldgebiet "Eichelhag" bei Rheinau. Gleichzeitig grenzt der Bohrplatz an den regionalen Wildtierkorridor ZH 32, welcher im Süden vom Waldgebiet "Seewerben" in nordöstlicher Richtung gegen Rudolfingen verläuft. Weiter verläuft eine Ausbreitungsachse von regionaler Bedeutung südlich des Bohrplatzes in West-Ost-Richtung vom "Seewerben" zum "Bergholz".

Aufgrund der randlichen Lage des Bohrplatzes nahe dem Wildtierkorridor und innerhalb der Ausbreitungsachse sind nur geringe Auswirkungen auf die Wandertätigkeit der Wildtiere zu erwarten. Es ist jedoch mit Auswirkungen auf die ansässigen Wildtiere zu rechnen, die sich im Bereich des Waldrands "Berg" aufhalten. Diese können durch Lärm- und Lichtimmissionen der Bohrtätigkeiten sowie durch die Transporte gestört werden.

Das Jagdrevier wird durch den Bau und den Betrieb des Bohrplatzes nicht tangiert bzw. die Jagd wird nicht eingeschränkt.

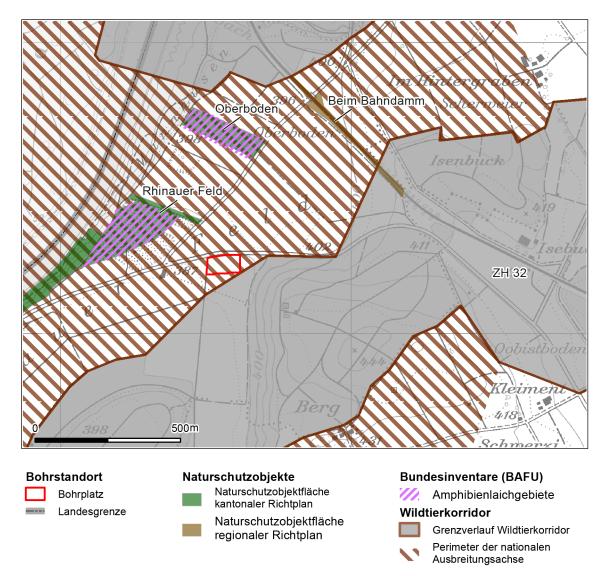


Fig. 6.15: Naturschutzzonen beim Standort der Sondierbohrungen Rheinau.

Massnahmen: Auf wildtierökologische Belange ist vermehrt Rücksicht zu nehmen. Die Aushub- und Humusdepots sind jeweils seitlich des Bohrplatzes als Leitlinien in Nord-Süd-Richtung anzuordnen, um den Wildtieren und Amphibien das Passieren des Bohrplatzes zu erleichtern. Gegebenenfalls sind die ohnehin vorgesehenen Lärm- und Lichtschutzmassnahmen in Bezug auf die wildtierökologischen Belange zu ergänzen, in dem die Emissionen (Licht und Lärm) an den Quellen reduziert werden.

6.5.15 Landschaft und Ortsbild

Der Bohrplatz der Sondierbohrungen Rheinau liegt gemäss dem kantonalen Richtplan (Kt. Zürich 2015) ausserhalb von geschützten Landschaften (vgl. Fig. 6.16), jedoch innerhalb des Landschaftsfördergebiets "Thur- und Rheinlandschaft – Niederholz" (Objekt-Nr. 21). Die Förderschwerpunkte des Gebiets werden durch die nur temporär bestehenden Anlagen für den Bau und Betrieb des Bohrplatzes jedoch nicht tangiert.

Westlich bzw. südwestlich des Bohrplatzes befindet sich das BLN-Gebiet "Unterseen – Hochrhein" (Objekt-Nr. 1411), wobei der Bereich entlang des Rheins zusätzlich als kantonales geomorphologisches Landschaftsschutzobjekt "Rheinschlinge" ausgewiesen ist. Diese Gebiete werden durch den Bau oder den Betrieb des Bohrplatzes jedoch nicht beeinträchtigt.

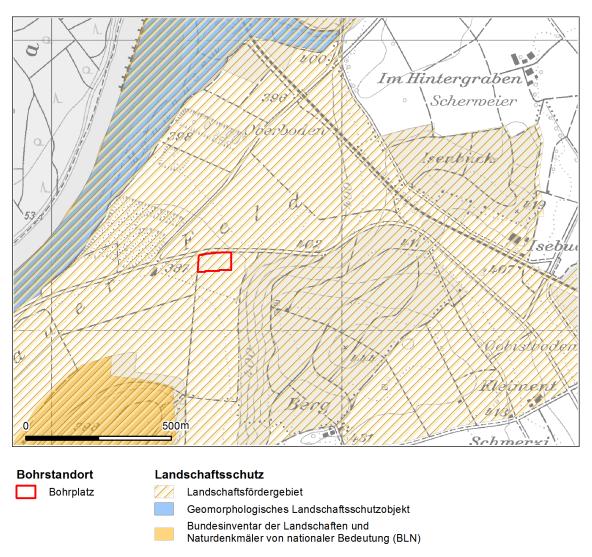


Fig. 6.16: Landschaftsschutzflächen beim Standort für die Sondierbohrungen Rheinau.

Durch den Bau und den Betrieb des Bohrplatzes sind daher lediglich lokal negative Auswirkungen auf das umgebende landwirtschaftlich geprägte Landschaftsbild zu erwarten. Diese Beeinträchtigung wird mit dem Rückbau des Bohrplatzes jedoch wieder aufgehoben und besteht während der Betriebsphase nur temporär.

Gemäss Schweiz Mobil führen keine Wander- oder Velorouten direkt am Bohrplatz vorbei.

Massnahmen: Beim Rückbau des Bohrplatzes wird der ursprüngliche landschaftliche Zustand bestmöglich wiederhergestellt.

6.5.16 Kulturdenkmäler und archäologische Stätten

Der Bohrplatz der Sondierbohrungen Rheinau liegt in einer archäologischen Zone des Kantons Zürich (Fig. 6.17). Die archäologischen Zonen entsprechen archäologischen Verdachtsflächen und sind im Bereich des Bohrplatzes grossflächig ausgeschieden.

Die westlich in Richtung Bohrplatz führende Poststrasse und die weiterführende Rheinauerstrasse sind im Inventar der historischen Verkehrswege der Schweiz (IVS) als regional bedeutende historische Verkehrswege verzeichnet (Objekt-Nr. ZH 905). Sie weisen jedoch in diesem Bereich keine Substanz aus und es ist jeweils nur der historische Verlauf ausgewiesen. Die beiden Abschnitte werden durch den Bau oder den Betrieb des Bohrplatzes nicht tangiert.

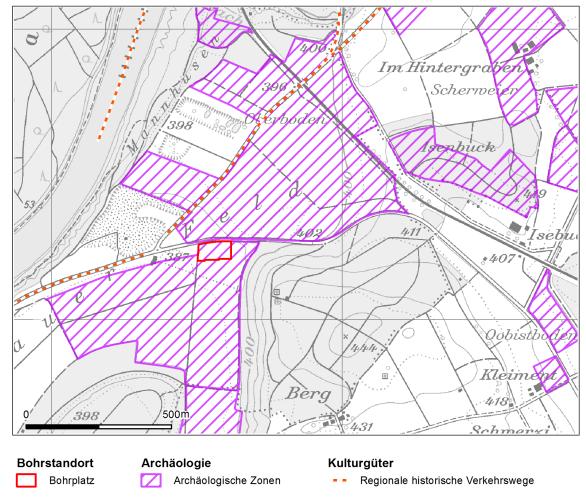


Fig. 6.17: Archäologisch relevante Flächen und Kulturgüter beim Standort der Sondierbohrungen Rheinau.

Massnahmen: Die Kantonsarchäologie ist im Vorfeld über Bodeneingriffe zu informieren. Bei der Erstellung des Bohrplatzes wird zudem ein Augenmerk auf mögliche historische oder archäologische Funde gelegt. Treten solche Funde auf, wird die Tätigkeit sofort eingestellt und Kontakt mit der Kantonsarchäologie des Kantons Zürich aufgenommen.

6.5.17 Störfallvorsorge/Katastrophenschutz

Im näheren Umkreis des Bohrplatzes der Sondierbohrungen Rheinau befinden sich keine Anlagen oder Betriebe, welche der Verordnung über den Schutz vor Störfällen (StFV) unterliegen. Ausserdem werden keine Stoffe gelagert, welche die Mengenschwellen nach StFV erreichen würden.

Entsprechend sind keine Massnahmen nötig.

6.5.18 Raum- und Nutzungsplanung

Die Raum- und Nutzungsplanung ist kein eigentlicher Umweltbereich im Sinne einer Umweltprüfung, welche die Auswirkungen einer Anlage auf schutzwürdige Objekte beurteilt. Das Thema zukünftiger Nutzungen gemäss der kantonalen Richtplanung soll hier dennoch beschrieben werden, da der Bohrkeller bis zu 100 Jahre verbleiben kann.

Aktuell wird der Bohrplatz landwirtschaftlich genutzt. Er liegt im Landwirtschaftsgebiet und ist als Fruchtfolgefläche ausgeschieden (vgl. Fig. 6.13). Der Bohrplatz liegt im Bereich mächtiger Kiesvorkommen, die vor allem südlich und westlich des Bohrplatzes abgebaut werden. Rund 200 m südlich des Bohrplatzes wird eine Kiesgrube betrieben, die sich mit dem Bohrplatz die Zufahrtsstrasse teilt.

Gemäss den Vorgaben der Richtplanung des Kantons Zürich (Kt. Zürich 2015) sowie der Bauund Zonenordnung der Gemeinde Rheinau (BZO; Gemeinde Rheinau 2012) wird der Bohrplatz der Sondierbohrungen Rheinau weiterhin dem Landwirtschaftsgebiet zugeordnet und nach Abschluss der Betriebsphase und erfolgter Rekultivierung auch künftig als Fruchtfolgefläche zur Verfügung stehen.

7 Mögliche Auswirkungen der Untersuchungen auf die Geologie und Umwelt (nach Art. 58 KEV)

Wie bereits in Kap. 6.1 erwähnt, dienen erdwissenschaftliche Untersuchungen mittels Sondierbohrungen dazu, die Kenntnisse des Untergrunds im Hinblick auf ein geologisches Tiefenlager zu erweitern. Die Bewilligungen für Sondierbohrungen werden gemäss KEG Art. 35 Abs. 2 lit. a durch das UVEK u.a. dann erteilt, wenn die Eignung eines Standorts dadurch nicht beeinträchtigt wird. Hierzu hat der Gesuchsteller gemäss KEV Art. 58 als Teil der Gesuchsunterlagen einen Bericht über mögliche Auswirkungen der Untersuchungen auf Geologie und Umwelt einzureichen. Im Folgenden werden ausgewählte Aspekte zu den Auswirkungen der geplanten Sondierbohrungen auf die Geologie und die Umwelt betrachtet und bewertet.

7.1 Einschlusswirksamer Gebirgsbereich

Sondierbohrungen können relevante Veränderungen der Barrierenwirksamkeit des einschlusswirksamen Gebirgsbereichs (EG) verursachen und somit die Eignung eines Standorts einschränken. In Nagra (2015a) werden die Auswirkungen der für SGT-E3 geplanten Sondierbohrungen im Standortgebiet ZNO auf die Barrierenwirksamkeit des EG detailliert untersucht. Dies geschieht anhand von generischen dreidimensionalen Modellrechnungen zur Radionuklidfreisetzung bei einem tiefen Bohrloch in unmittelbarer Nähe eines verschlossenen geologischen Tiefenlagers, welche in Poller et al. (2015) und Nagra (2015b) dokumentiert sind und auf den Dosisberechnungen zu den provisorischen Sicherheitsanalysen in SGT-E2 (Nagra 2014d) basieren.

Für die Bewertung wird ein sogenannter abdeckender Fall herangezogen, welcher alle in der Modellierung als relevant identifizierten Ungewissheiten bezüglich der Wechselwirkungen zwischen einem verschlossenen geologischen Tiefenlager und einem einzelnen tiefen verfüllten Bohrloch konservativ berücksichtigt. Zusätzlich werden die Ergebnisse des abdeckenden Falls für jedes betrachtete Tiefenlagersystem im Standortgebiet auf eine vollständige Lagerkonfiguration mit mehreren tiefen Bohrungen in der unmittelbaren Umgebung des verschlossenen Tiefenlagers übertragen. Dabei werden für ein SMA-Lager drei tiefe Bohrungen, für ein HAA-Lager und ein Kombilager neun tiefe Bohrungen angenommen.¹⁴

Die berechneten Dosismaxima innerhalb des jeweiligen Betrachtungszeitraums für das Wirtgestein Opalinuston sind in Tab. 7.1 aufgeführt. Es zeigt sich, dass die Nutzung des geologischen Standortgebiets ZNO von den für SGT-E3 geplanten Sondierbohrungen in diesem Gebiet nicht eingeschränkt wird. Das behördlich definierte Schutzkriterium 1¹⁵ von 0.1 mSv/a wird für alle möglichen Lagersysteme im geologischen Standortgebiet mit genügender Sicherheitsmarge eingehalten.

Die gleiche Anzahl tiefer Bohrungen für das HAA-Lager und das Kombilager erklärt sich aus der Tatsache, dass in den Modellrechnungen sowohl für den LMA-Teil des HAA-Lagers, als auch für den SMA/LMA-Teil des Kombilagers das gleiche abdeckende Abfallinventar für allfällig betroffene Lagerkammern verwendet wird (vgl. Nagra 2015a).

Gemäss Richtlinie für die schweizerischen Kernanlagen ENSI-G03/d: Spezifische Auslegungsgrundsätze für geologische Tiefenlager und Anforderungen an den Sicherheitsnachweis, April 2009 (ENSI 2009).

Tab. 7.1: Maximale Dosis innerhalb des jeweiligen Betrachtungszeitraums für vollständige Lagerkonfigurationen mit mehreren tiefen Bohrungen sowie für verschiedene Abstände zwischen Tiefenlager und tiefen Bohrungen in [mSv/a].

Freisetzungsort	Abstand zwischen Tiefenlager und tiefen Bohrungen				
	10 m	20 m	50 m	100 m	
SMA-Lager					
Tiefe Bohrungen	2.0×10^{-2}	4.5×10^{-3}	9.0 × 10 ⁻⁴	6.6×10^{-5}	
Intakter EG	3.4×10^{-3}	3.4×10^{-3}	3.4×10^{-3}	3.4×10^{-3}	
Gesamt	2.3× 10 ⁻²	7.9×10^{-3}	4.3×10^{-3}	3.5×10^{-3}	
HAA-Lager bzw. Kombilager					
Tiefe Bohrungen	2.0×10^{-2}	4.6×10^{-3}	9.1 × 10 ⁻⁴	6.9 × 10 ⁻⁵	
Intakter EG	3.7×10^{-3}	3.7×10^{-3}	3.7×10^{-3}	3.7×10^{-3}	
Gesamt	2.4×10^{-2}	8.2 × 10 ⁻³	4.6×10^{-3}	3.7×10^{-3}	

Als Sicherheitsabstand zwischen sicherheitsrelevanten Anlagenteilen eines verschlossenen geologischen Tiefenlagers und einer tiefen Bohrung wird ein Mindestwert von 50 m festgelegt (exklusive allfällige aufgelockerte Bereiche der Bauwerke des verschlossenen Tiefenlagers und der Sondierbohrungen). Aus Sicht der Langzeitsicherheit bestehen bei Einhaltung dieses Sicherheitsabstands keine Anforderungen:

- bezüglich spezieller Versiegelungsmassnahmen zusätzlich zur geplanten Verfüllung der verbleibenden tiefen Bohrungen
- bezüglich der konkreten Anordnung der Bauwerke unter Tag sowie
- bezüglich der konkreten Abfallplatzierung im jeweiligen Tiefenlager

Für die Modellrechnungen wurde für die Verfüllung der tiefen Bohrung im Basisfall eine hydraulische Durchlässigkeit von 1×10^{-8} m/s angenommen, welche aufgrund einer Evaluation der Eignung von Zementen für die Verfüllung von Bohrungen sicher erreicht werden kann (Cloet & Traber 2015). Im für die Bewertung verwendeten abdeckenden Fall wurde zusätzlich ein pessimistischer Wert von 1×10^{-6} m/s verwendet. Generell basieren die Modellrechnungen und auch die nachfolgende Bewertung auf einer Kombination von zahlreichen pessimistischen und konservativen Annahmen, weshalb die Ergebnisse als sehr robust eingestuft werden. Zudem bestehen Reserven für allfällige weitere Tiefbohrungen in späteren Phasen der Lagerrealisierung sowie in Bezug auf das eingelagerte Inventar.

Da heute noch nicht definitiv festgelegt ist, ob und in welche Richtung – abgesehen von einer Vertikalbohrung – letztendlich vom Bohrplatz der Sondierbohrungen Rheinau aus gebohrt wird, stellt Fig. 7.1 umhüllend die Lage und Ausdehnung der möglichen Bohrpfade von Schrägbohrungen mit bis zu 45° aus der Vertikalen in die vier vorgesehenen Richtungen N, S, W und E gemäss Beilagen 4 und 5 und unter Berücksichtigung des festgelegten Sicherheitsabstands von 50 m (d.h. ein Radius von 50 m um die potenziellen Bohrpfade) dar. Der Bohrplatz Rheinau ist für Schrägbohrungen in Richtung N, S, W und E ausgelegt (vgl. Kap.5.3).

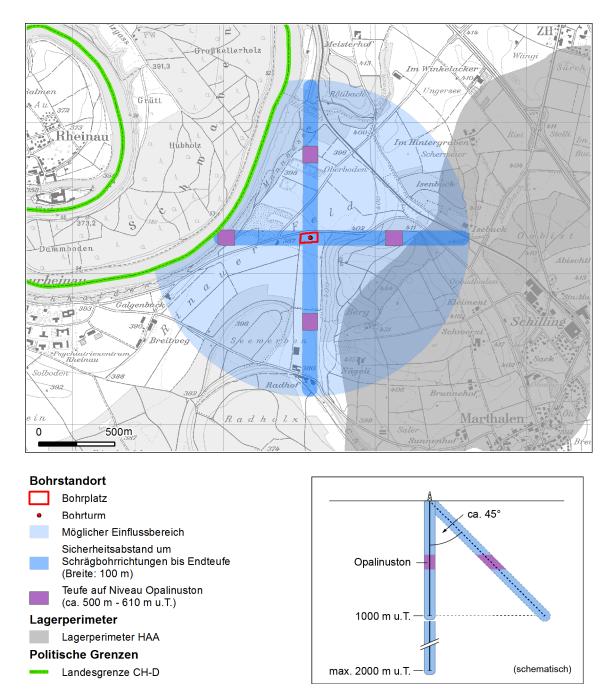


Fig. 7.1: Lage und Ausdehnung der möglichen Bohrpfade der Sondierbohrungen Rheinau in Bezug auf den HAA-Lagerperimeter mit Sicherheitsabstand von r = 50 m um die potenziellen Bohrpfade.

Basierend auf dem Prognoseprofil (vgl. Beilage 3) sind das Tiefenniveau des Wirtgesteins Opalinuston sowie die vorgesehene Endteufe von ca. 50 m unterhalb der Basis des Mesozoikums (entspricht einer Endteufe von 1'000 m u.T.) angegeben sowie die maximal vorgesehene Bohrteufe von 2'000 m u.T. Abweichend davon erreicht die Schrägbohrung Richtung Westen nur die Basis des Opalinuston (ca. 465 m u.T.), da sie nicht über die Landesgrenze hinaus gebohrt wird. Der Bohrpfad der Schrägbohrung nach Osten würde auf Lagerniveau randlich in den östlich bis südöstlich gelegenen HAA-Lagerperimeter hineinreichen.

Die Sicherheit eines späteren geologischen Tiefenlagers für HAA kann gewährleistet werden und es bestehen keine wesentlichen Einschränkungen bezüglich der späteren Platzierung des geologischen Tiefenlagers innerhalb des HAA-Lagerperimeters.

7.2 Grundwasser und Aquifere

Relevante Auswirkungen auf das oberflächennahe Grundwasser bzw. die tiefen Aquifere durch Bohrungen sind nicht zu erwarten, wenn die Bohrarbeiten sowie der Ausbau der Bohrungen nach dem aktuellen Stand der Technik ausgeführt werden. Zu beachten ist, dass sich der Bohrplatz und die Bohrungen innerhalb eines Gebiets mit nur bedingt nutzbarem Grundwasser (Gebiet mit geringer Grundwassermächtigkeit < 2 m; vgl. Fig. 6.10).

Im Übrigen können Risiken schon im Vorfeld durch eine auf den konkreten Fall angepasste Bohrplanung weitestgehend minimiert bzw. ausgeschlossen werden. Die Konstruktion des Bohrplatzes (vgl. Kapitel 5) ermöglicht es zudem, die anfallenden Flüssigkeiten aufzufangen, zu kontrollieren, zu behandeln und entsprechend zu entsorgen, sodass auch eine Beeinträchtigung des oberen Grundwasserleiters ausgeschlossen werden kann.

Durch die Lockergesteine bis zum Fels wird in der Regel mit Frischwasser gebohrt und anschliessend sofort ein entsprechendes Standrohr gesetzt und einzementiert. Damit wird eine Beeinträchtigung des nur bedingt nutzbaren, oberflächennahen Grundwasservorkommens durch die nachfolgenden Bohrarbeiten verhindert. In der Folge werden in den Bohrungen sukzessive weitere Verrohrungen eingebaut und zementiert. Mit diesem Einbau werden die tieferen Aquifere ebenfalls geschützt und schon während des Abteufens der Bohrungen wirksam voneinander getrennt, sodass es zu keinen langfristigen hydraulischen Kurzschlüssen kommen kann. Damit wird sichergestellt, dass das hydraulische Potenzial der Aquifere durch die Bohrungen nicht gestört wird und es nicht zu einer Vermischung von unterschiedlich mineralisierten Formationswässern kommt.

Die Qualität der Einbauten und der Zementationen der Verrohrungen wird mittels eines bohrtechnischen Loggings (vgl. Kap. 3.3.2) überprüft. Im Fall einer nicht ausreichenden Abdichtung kann der geforderte Grundwasserschutz durch nachträgliche Sanierungsmassnahmen (z.B. Nachzementationen) erreicht werden. Dies sind Standardmethoden bzw. -verfahren, die jederzeit zur Anwendung kommen können.

Dass die oben beschriebenen Massnahmen in Bezug auf einen umfassenden Grundwasserschutz zielführend sind, hat die Nagra bereits in der Vergangenheit bei zahlreichen Sondierbohrungen (z.B. Nordschweiz, Wellenberg, Sondierbohrung Benken etc.; Nagra 1985, Nagra 1986a – e und Gassler & Macek 1994) den Aufsichtsbehörden aufgezeigt. Entsprechende allfällige Auflagen durch die Aufsichtsbehörden konnten in der Vergangenheit jeweils vollumfänglich erfüllt werden.

7.3 Langzeitbeobachtung

Zur Langzeitbeobachtung der Formationsdruckhöhen in einer Bohrung sowie zur Entnahme von Grundwasserproben werden in der Regel Langzeitbeobachtungssysteme in die verrohrten Bohrungen eingebaut. In bestimmten Bohrlochabschnitten besteht über Perforationen, Zementfenster oder offene Bohrlochstrecken Zugang zu der zu beobachtenden Formation.

Mit Hilfe hydraulischer Packer und/oder Dichtstrecken (z.B. aus Zement oder Compactonit) werden die einzelnen Aquifere hydraulisch innerhalb des Bohrlochs voneinander getrennt. Die

Langzeitbeobachtungssysteme lassen sich im Versagensfall aus dem Bohrloch bergen und reparieren bzw. durch ein neues Messsystem ersetzen (Jäggi & Frieg 2010).

Nach Abschluss der Beobachtungsphase, welche Jahre bzw. Jahrzehnte dauern kann, werden die Messsysteme aus den Bohrungen ausgebaut. Danach werden die Bohrungen nach den Vorgaben der Aufsichtsbehörden ordnungsgemäss verfüllt oder versiegelt (vgl. Kap. 7.4).

7.4 Verfüllung / Versiegelung von Sondierbohrungen

Nach Abschluss der Untersuchungen in den Sondierbohrungen (gegebenenfalls erst nach Abschluss der Langzeitbeobachtungen) werden die Sondierbohrungen nach dem Stand der Technik verfüllt oder – falls gefordert – versiegelt. Hierbei kommen – im Sinne von Richtlinien und mangels vergleichbarer schweizerischer Vorgaben – die gemäss dem deutschen Bundesberggesetz (BbergG, BMJV 2013) von verschiedenen Bundesländern erlassenen Tiefbohrverordnungen (BVOT 2006a und b, BVOT 1981, BVT 1981) mit ihren Bestimmungen zur Anwendung, die das Verfüllen von auflässigen Bohrungen bzw. die Sicherung stillliegender Bohrungen zum Schutz der Umwelt regeln.

Die Verfüllung von Bohrungen ist in der Tiefbohrtechnik eine Routineaufgabe und dementsprechend liegen erprobte Verfahren vor, die auch schon bei früheren Nagra-Tiefbohrungen in der Nordschweiz (Frieg et al. 2002a – d) und am Wellenberg (Frieg et al. 2004) mehrfach erfolgreich angewandt wurden und die obengenannten Richtlinien vollumfänglich erfüllen.

Die Rückverfüllung mit sulfatbeständigen Tiefbohrzementen ist ein Standardverfahren, und die erreichten hydraulischen Durchlässigkeiten des ausgehärteten Verfüllmaterials variieren zwischen 10⁻¹⁰ und 10⁻¹⁴ m/s, sodass die angestrebte hydraulische langzeitstabile Trennung von Aquiferen erreicht wird (Cloet & Traber 2015).

Für den Fall, dass die Bohrungen in den einschlusswirksamen Gebirgsbereich, d.h. in den potenziellen Lagerbereich, abgeteuft werden und zu einem späteren Zeitpunkt doch eine Versiegelung dieser Bohrungen gefordert wird, hat die Nagra, teilweise in Zusammenarbeit mit ihren Schwesterorganisationen, bereits in der Vergangenheit entsprechende Konzepte und Vorgehensweisen entwickelt (Brenner & Jedelhauser 1989, Gaus et al. 2012, AMEC 2014), deren Funktionsfähigkeit auch ausgetestet wurde (Pusch et al. 1987, Pusch et al. 1991). Im Rahmen der Standortuntersuchungen am Wellenberg wurde die Sondierbohrung SB4a/s nach einem von der Aufsichtsbehörde (HSK, heute ENSI) geprüften und genehmigten Konzept für Sedimentgesteine erfolgreich versiegelt (Nagra 2002b). Weitere Forschungsarbeiten zum Thema Versiegelung wurden von der Nagra im Felslabor Grimsel durchgeführt, um die Versiegelung von geneigten oder subhorizontalen Bohrungen sicherzustellen (Blümling & Adams 2008).

Im Rahmen des SB-Experiments im Felslabor Mont Terri Projekt wurden in einer senkrechten Bohrung von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH (Braunschweig, Deutschland) Sand/Bentonit-Mischungen auf ihre Eignung als Versiegelungsmaterial für geologische Tiefenlager im Wirtgestein Opalinuston getestet (Rothfuchs et al. 2013). Es zeigte sich auch bei einem Mock-up Test im Labor, dass die Materialmischungen mit einem Anteil von 35 bis 50 % Bentonit geeignet sind. Die erreichten Wasserpermeabilitäten nach der vollständigen Aufsättigung des In situ-Tests lagen bei 4.2 bis 5.2×10^{-18} m/s und erfüllten damit die Erwartungen und Anforderungen an ein Versiegelungsmaterial.

Die detaillierten Anforderungen an die Verfüllung bzw. Versiegelung der Bohrungen werden erst definiert, wenn die geowissenschaftlichen Untersuchungen und/oder Langzeitbeobachtungs-

phasen in den Sondierbohrungen abgeschlossen sind. Zu diesem Zeitpunkt wird auch erst die genaue Auslegung der Verfüllung bzw. Versiegelung festgelegt. Die oben aufgeführten Untersuchungen und Erfahrungen zeigen, dass bereits heute die Konzepte und Techniken vorhanden sind, um die entsprechenden Anforderungen an eine Verfüllung oder Versiegelung von Bohrungen zu erfüllen.

7.5 Induzierte Seismizität

Aufgrund der geplanten Bohr- und Testarbeiten in den Sondierbohrungen und unter Berücksichtigung der Tatsache, dass es sich um relativ untiefe Bohrungen in den mesozoischen Deckschichten (Sedimente) handelt, wird die Wahrscheinlichkeit für spürbare induzierte Seismizität als gering angesehen. Generell sind Beben erst ab einer Magnitude von ca. 2 bis 2.5 auf der Richterskala vom Menschen spürbar.

In der Vergangenheit konnte bei keiner Nagra-Sondierbohrung oder vergleichbaren Bohrungen in der Schweiz die Auslösung von spürbaren Erschütterungen beobachtet werden. Im Geothermieprojekt Schlattingen, an dem die Nagra mit vergleichbaren Messungen und Untersuchungen beteiligt war, registrierte der Schweizerische Erdbebendienst (SED) keine Beben. Bei der Ausführung von Stimulationsmassnahmen mit Salzsäure in den Schichten des Oberen Muschelkalks der Geothermiebohrung Schlattingen SLA-2 kam es über den kurzen Stimulationszeitraum von wenigen Stunden lediglich zu Mikrobeben mit einer Magnitude von unter 0.5 auf der Richterskala, welche jedoch für den Menschen nicht spürbar sind (Kraft et al. 2016).

Im Rahmen der Bohr- und Testarbeiten der Sondierbohrungen und/oder der anschliessenden Langzeitbeobachtungsphase werden keinerlei Stimulationsmassnahmen (d.h. eine Injektion von grossen Fluidmengen unter hohem Druck) zur Erhöhung der Transmissivität in den verschiedenen Gesteinsformationen durchgeführt. Solche Stimulationsmassnahmen waren in der Vergangenheit bei schweizerischen Geothermieprojekten (Basel, St. Gallen) verantwortlich für induzierte Erdbeben. Lediglich bei der Durchführung der geplanten hydraulischen Tests und/oder bei Spannungsbestimmungen könnten geringe Mengen von Frischwasser bzw. Formationswasser zum Einsatz kommen, welche jedoch mit geringerem Druck in die Formation injiziert werden.

Im Übrigen betreibt der SED gemeinsam mit der Nagra ein Schwachbebenmessnetz im Bereich der Standortgebiete, mit dem allfällige Ereignisse kontinuierlich aufgezeichnet werden (Plenkers 2014) und welches zur Beweissicherung eingesetzt werden kann. Alle aktuell betriebenen Messstationen des SED findet man unter http://www.seismo.ethz.ch/index.

7.6 Auftreten von Gas

Für die Ausführung der Bohr- und Testarbeiten werden die Unternehmer verpflichtet, die Bestimmungen, die sich aus den von den deutschen Bundesländern erlassenen Tiefbohrverordnungen ergeben, zur Anwendung zu bringen (vgl. BVOT 1981, BVOT 2006a und b, BVT 1981)¹⁶. Dies bedeutet beispielsweise, dass während der gesamten Bohr- und Testphase aus Gründen der Arbeitssicherheit eine kontinuierliche Überwachung für das allfällige Auftreten von Gasen (CH₄/Kohlenwasserstoffe, CO₂, H₂S) aus dem Untergrund stattfindet.

Beim Durchbohren von gashaltigen Formationen (z.B. Molasse) können Gase unter Umständen in die Bohrung eintreten. Geringe Gaskonzentrationen sind nicht kritisch, da sie sich beim Aus-

Vergleichbare Regelungen sind in der Schweiz nicht erlassen worden.

tritt an die Oberfläche sofort mit der Umgebungsluft vermischen. In der Regel verhindert das Spülungsgewicht das Eintreten von Fluiden sowie freien und gelösten Gasen in die Bohrung. Sollten doch grössere Gasmengen unkontrolliert auftreten, kann die Bohrung mit den standardmässig installierten Sperrvorrichtungen, z.B. Ringpreventer, Gassperrtool oder einem sogenannten Blow Out Preventer (BOP), gasdicht verschlossen werden, um allfällig auftretende Gefahren abzuwenden. Anschliessend kann über das weitere Vorgehen entschieden werden. Zum Beispiel kann Gas kontrolliert abgeführt oder im Falle von brennbaren Gasen auch abgefackelt werden. Danach können weitere Massnahmen getroffen werden, um das Eintreten von Gas in die Bohrung zu verhindern bzw. zu minimieren und so die sichere Fortführung der Arbeiten zu gewährleisten.

Mit einer Ausführung der Bohrarbeiten nach dem aktuellen Stand der Technik und in Verbindung mit den zur Anwendung kommenden Kontroll- und Sicherheitsmassnahmen sowie den zur Verfügung stehenden bohrtechnischen Mitteln und Möglichkeiten ist das Auftreten von Gas in einer Sondierbohrung jederzeit beherrschbar und stellt keine Gefährdung dar.

8 Antrag

8.1 Bewilligungsvoraussetzungen (nach Art. 35 KEG)

8.1.1 Eignung (gemäss Art. 35 Abs. 2 lit. a KEG)

In Kapitel 2 "Geologischer Bericht" wurden die geologischen und hydrogeologischen Randbedingungen für die Sondierbohrungen dargelegt und der derzeitige Wissensstand zusammenfassend dargestellt.

Die Zielsetzungen für die Standortuntersuchungen und das resultierende Untersuchungsprogramm für Etappe 3 des Sachplanverfahrens wurden in Kapitel 3 aufgeführt. Sie stützen sich auf das für SGT-E3 aufgestellte Explorationskonzept (Nagra 2014c).

Die geplanten Untersuchungen sind grundsätzlich geeignet, die erforderlichen Grundlagen für die spätere Beurteilung der Sicherheit eines geologischen Tiefenlagers zu erbringen, ohne die Eignung des Standorts zu beeinträchtigen (vgl. Kapitel 7).

8.1.2 Entgegenstehende Interessen (Abwägung nach Art. 3 RPV)

Das Bauvorhaben steht gemäss Kapitel 6 nach durchgeführter Standortevaluation (vgl. Kap. 6.2 und 6.3) noch in Konflikt mit folgenden Interessen:

- Gewässer- und Grundwasserschutz: In Bezug auf den oberflächennahen, mittleren Grundwasserspiegel werden unter Umständen noch ergänzende Untersuchungen durchgeführt (vgl. Kap. 6.5.5). Die im Gesuch vorgesehenen Massnahmen zum Schutz des Grundwassers, d.h. sowohl des oberflächennahen Aquifers als auch der tieferen Aquifere, sind geeignet, jegliche Gefährdung wirksam zu verhindern. Dies trifft auch für den direkt im Bereich des Bohrplatzes verlaufenden, eingedolten "Radhofbächli" zu (vgl. Kap. 3.2, 5.7 und 7.2).
- Landwirtschaftszone und Fruchtfolgeflächen: Die Landwirtschaftszone und insbesondere Fruchtfolgeflächen sollen von Überbauungen weitgehend freigehalten werden (Art. 16 RPG). Dies schliesst auch Anlagen wie Sondierbohrungen mit ein. Die Interessenabwägung gemäss Art. 3 Abs. 1 lit. a RPV zeigt jedoch, dass im Betrachtungsraum der Sondierbohrungen Rheinau keine Bauzonen zur Verfügung stehen. Aufgrund der positiven Standortgebundenheit der Sondierbohrungen ist ein Ausweichen mit dem Bohrplatz in eine umliegende Bauzone nicht möglich. Weiterhin ist festzuhalten, dass der Bohrplatz temporär betrieben wird und anschliessend bis auf den ebenerdigen Bohrkeller mit Dimensionen von ca. 7.5 m × 5.5 resp. 3.1 m (L × B; vgl. Beilage 9) und dessen Erschliessung zurückgebaut und vollständig rekultiviert wird.
- Lärmschutz: Aufgrund der bereits heute vorgesehenen baulichen und betrieblichen Massnahmen (vgl. Kap. 5.9 und 6.5.2) wird davon ausgegangen, dass die Planungswerte nach Anhang 6 LSV mit den vorgesehenen Dämmmassnahmen eingehalten werden können. Technische Lärmschutzmassnahmen am Bohrgerät sind zusätzlich möglich, falls die noch durchzuführende Lärmprognose zeigt, dass trotzdem Lärmimmissionen über dem Grenzwert auftreten sollten.

- Natur und Landschaft: Der Bohrplatz der Sondierbohrungen Rheinau liegt innerhalb des Landschaftsfördergebiets "Thur- und Rheinlandschaft - Niederholz" und ist ca. 400 m vom BLN-Gebiet "Unterseen - Hochrhein" entfernt. Das Gebiet um den Bohrplatz der Sondierbohrungen Rheinau wird bereits intensiv durch den Kiesabbau genutzt, sodass der landschaftliche Charakter bereits anthropogen beeinflusst ist. Die temporäre Beeinträchtigung durch den Bohrplatz im Landschaftsfördergebiet ist als gering zu beurteilen. Nach dem Rückbau des Bohrplatzes bleibt einzig der ebenerdige Bohrkeller mit seiner Erschliessung zurück. Von diesen beiden langfristig verbleibenden Anlagen sind auch an dieser kaum vorbelasteten Stelle nur wenige Beeinträchtigungen zu erwarten (vgl. Kap. 6.5.15). Ausserdem grenzt der Bohrplatz direkt an den kantonalen Wildtierkorridor ZH 32 und liegt innerhalb einer nationalen Ausbreitungsachse. Es wird jedoch davon ausgegangen, dass der Bohrplatz von den Wildtieren umgangen werden kann. Die Ausrichtung der Aushub- und Humusdepots seitlich des Bohrplatzes soll den wandernden Wildtieren das Passieren des Bohrplatzes erleichtern (vgl. Kap. 6.5.14). Die ohnehin vorgesehenen Lärm- und Lichtschutzmassnahmen werden im Rahmen des Ausführungsprojekts in Bezug auf wildtierökologische Belange gegebenenfalls ergänzt.
- Archäologie: Der Bohrplatz Rheinau befindet sich auf einer Verdachtsfläche für archäologische Funde (vgl. Kap. 6.5.16). Es kann daher nicht ausgeschlossen werden, dass während der Bauphase archäologische Funde zum Vorschein kommen. Die Kantonsarchäologie ist im Vorfeld über Bodeneingriffe zu informieren. Bei der Erstellung des Bohrplatzes wird zudem ein Augenmerk auf mögliche historische oder archäologische Funde gelegt. Treten solche Funde auf, wird die Tätigkeit sofort eingestellt und Kontakt mit der Kantonsarchäologie des Kantons Zürich aufgenommen.

Daraus ergibt sich, dass dem Abteufen von Sondierbohrungen am Bohrplatz Rheinau keine höher zu gewichtenden Interessen entgegenstehen und die Arbeiten im vorgesehenen Umfang ausgeführt werden können.

8.2 Befristungen (nach Art. 36 Abs. 2 KEG)

Es wird eine Bewilligung mit einer Geltungsdauer von zehn Jahren ab Rechtskraft beantragt. Die Gewinnung der nötigen Erkenntnisse über den Untergrund im Hinblick auf die Standortentscheide in SGT-E3 bedingt ein systematisches Vorgehen an verschiedenen Orten während längerer Zeit. Dies bedeutet, dass die Zeitdauer, innert der von einer konkreten Bewilligung Gebrauch gemacht werden kann, sich über zehn Jahre erstrecken muss.

Das Bestehen des Bohrplatzes wird auf maximal fünf Jahre veranschlagt. In dieser Zeit sind das Erstellen des Bohrplatzes und das Abteufen von bis zu drei Bohrungen möglich. Entsprechend ist die Befristung der Bewilligung für die Durchführung der Bohrarbeiten ab Baubeginn auf fünf Jahre festzusetzen.

Nach Beendigung der Bohrarbeiten und der Rekultivierung der entsprechenden Flächen werden der Bohrkeller und eine entsprechende Zufahrt sowie eine Energie- und Telekommunikationszuleitung bei Bedarf weiterbestehen (vgl. Beilage 9). Der Bohrkeller dient dem Betrieb einer Langzeitbeobachtungsstation, allenfalls bis zum Verschluss eines allfälligen geologischen Tiefenlagers. Dafür ist die Bewilligung zunächst bis zum rechtskräftigen Entscheid über eine nukleare Baubewilligung maximal auf 45 Jahre zu befristen. Die Betriebsdauer kann auf Gesuch hin bis auf 100 Jahre verlängert werden, sofern sich dies für Langzeitbeobachtungen in Zusammenhang mit einem geologischen Tiefenlager als erforderlich erweist. Danach sind Bohrkeller, Zufahrt sowie Daten- und Stromleitung ebenfalls zu entfernen und die entsprechenden Flächen sind zu rekultivieren.

Falls die veranschlagten Zeiträume aus heute nicht vorhersehbaren Gründen nicht ausreichen, behält sich die Gesuchstellerin vor, rechtzeitig ein Gesuch um Verlängerung der entsprechenden vorgenannten Fristen einzureichen.

8.3 Anträge

Die Gesuchstellerin ersucht um folgende Bewilligungen:

- Der Gesuchstellerin wird die Bewilligung für zehn Jahre ab Rechtskraft (Geltungsdauer Bewilligung) für die Erstellung eines Bohrplatzes gemäss den beiliegenden Plänen und Unterlagen unter den nachgesuchten Auflagen und Bedingungen erteilt.
- Der Gesuchstellerin wird die Bewilligung erteilt, ab Baubeginn den Bohrplatz für die Dauer von fünf Jahren zu betreiben. Die Betriebsdauer kann auf Gesuch hin angemessen verlängert werden, sofern dies für die Gewinnung zusätzlicher Daten erforderlich ist.
- Der Gesuchstellerin wird die Bewilligung erteilt, von dem beantragten Bohrplatz aus bis zu
 drei Sondierbohrungen (vertikal oder schräg) bis zu einer Teufe von maximal 2'000 m u.T.
 abzuteufen und ein entsprechendes geowissenschaftliches Untersuchungsprogramm auszuführen.
- Der Gesuchstellerin wird die Bewilligung erteilt für die Erstellung und den Betrieb eines Bohrkellers mit entsprechender Zufahrt gemäss den beiliegenden Plänen. Diese Bewilligung wird auf die Dauer von 45 Jahren nach Beendigung des Bohrbetriebs erteilt. Die Bewilligung kann auf Gesuch hin bis auf 100 Jahre verlängert werden, sofern sich dies für Langzeitbeobachtungen in Zusammenhang mit einem geologischen Tiefenlager als erforderlich erweist.
- Der Gesuchstellerin wird die Bewilligung erteilt, einen Anschluss an das Mittelspannungsnetz (16 kV Freileitung) westlich des Schützenhauses Rheinau an den bestehenden EKZSchalter Kieswerk (F9 / Mast 2) und an das Niederspannungsnetz beim Schützenhaus
 (VK6+M Schützenhaus) zu erstellen sowie die entsprechende Zuleitung zum Bohrplatz zu
 verlegen und eine temporäre Trafostation auf dem Bohrplatz zu betreiben.

Eine Informationstafel mit den Gesuchsinformationen und dem Situationsplan wird auf Parzelle Kat.-Nr. 1148 vor der öffentlichen Auflage der Sondiergesuche aufgestellt.

9 Literaturverzeichnis

- Albert, W., Bläsi, H.R., Madritsch, H., Vogt, T. & Weber, H.P. (2012a): Geologie, Stratigraphie, Strukturgeologie und bohrlochgeophysikalisches Logging der Geothermiebohrung Schlattingen SLA-1 (Rohdaten). Nagra Project Report. Commercial-inconfidence.
- Albert, W., Bläsi, H.R., Hertrich, M. & Weber, H.P. (2012b): Erdwärmesondenbohrungen Löhningen (SH), Osterfingen (SH), Hemmental (SH), Beringen (SH), Schönenwerd (SO), Wölflinswil (AG): Geologische Aufnahme und bohrlochgeophysikalische Messungen (Rohdaten). Nagra Arbeitsber. NAB 12-24.
- AMEC (2014): Sealing deep site investigation boreholes Phase 1 Report. Bericht zu Handen des Radioactive Waste Management Directorate (RWMD) der Nuclear Decommissioning Authority (NDA). Ref: RWMD/03/042. NDA, Oxford, UK.
- BAFU (2001): Bodenschutz beim Bauen. Leitfaden Umwelt Nummer 10. Hrsg. Bundesamt für Umwelt, BAFU, Bern.
- BAFU (2004): Wegleitung Grundwasserschutz. Hrsg. Bundesamt für Umwelt, BAFU, Bern.
- BAFU (2005): Elektrosmog in der Umwelt. Hrsg. Bundesamt für Umwelt, BAFU, Bern.
- BAFU (2011): Baulärm-Richtlinie (BLR), Richtlinie über bauliche und betriebliche Massnahmen zur Begrenzung des Baulärms gemäss Artikel 6 der Lärmschutz-Verordnung vom 15. Dezember 1986. Hrsg. Bundesamt für Umwelt, BAFU, Bern, Stand 2011.
- BAFU (2016): Luftreinhaltung auf Baustellen. Richtlinie über betriebliche und technische Massnahmen zur Begrenzung der Luftschadstoff-Emissionen von Baustellen (Baurichtlinie Luft). Ergänzte Ausgabe, Bern, Februar 2016. Hrsg. Bundesamt für Umwelt, BAFU, Bern.
- BG (2015): Plangenehmigung Transformatorenstation Weid in Busswil. Urteil (des Bundesgerichts) 1C_604/2014 vom 12.05.2015. I. öffentlich-rechtliche Abteilung, Raumplanung und öffentliches Baurecht.
- Birkhäuser, Ph., Roth, Ph., Meier, B.P. & Naef, H. (2001): 3D-Seismik: Räumliche Erkundung der mesozoischen Sedimentschichten im Zürcher Weinland. Nagra Tech. Ber. NTB 00-03
- Bläsi, H.R., Deplazes, G., Schnellmann, M. & Traber, D. (2013): Sedimentologie und Stratigraphie des 'Braunen Doggers' und seiner westlichen Äquivalente. Nagra Arbeitsber. NAB 12-51.
- Bläsi, H.R., Weber, H.P. & Hertrich, M. (2014): Ergänzende Untersuchungen in EWS-Bohrungen: Effingen, Gansingen-Galten, Herznach, Tegerfelden-1, Tegerfelden-2, Wölflinswill-1, Wölflinswil-2 (AG) und Hemmental-2 (SH): Stratigraphie und Bohrlochgeophysik Rohdatenbericht. Nagra Arbeitsber. NAB 14-12.
- Blümling, P. & Adams, J. (2008): Grimsel Test Site Investigation Phase IV Borehole Sealing. Nagra Tech. Ber. NTB 07-01.

- BMJV (2013): Bundesberggesetz (BbergG). Bundesministerium der Justiz und für Verbraucherschutz. Gesetz vom 13. August 1980 (BGBl. I S. 1310), Stand 7. August 2013 (BGBl. I S. 3154). BMJV, Berlin, D.
- Brenner, R.P. & Jedelhauser, P. (1989): Bohrlochversiegelung: Konzept und Machbarkeitsnachweis. Nagra Tech. Ber. NTB 89-26.
- BVOT (1981): Landesverordnung Bergverordnung über Tiefbohrungen, Tiefspeicher und die Gewinnung von Bodenschätzen durch Bohrungen im Lande Schleswig-Holstein (Tiefbohrverordnung BVOT). 15. Oktober 1981, GVOBI Schl.-H. S. 264, Clausthal-Zellerfeld, D.
- BVOT (2006a): Bergverordnung für Tiefbohrungen, Untergrundspeicher und für die Gewinnung von Bodenschätzen durch Bohrungen im Land Nordrhein-Westfalen (Tiefbohrverordnung BVOT). Rundverfügung der Abteilung Bergbau und Energie in NRW der Bezirksregierung Arnsberg, 30. November 2006, Arnsberg, D.
- BVOT (2006b): Bergverordnung für Tiefbohrungen, untergrundspeicher und für die Gewinnung von Bodenschätzen durch Bohrungen im Land Niedersachsen (Tiefbohrverordnung BVOT). Landesamt für Bergbau, Energie und Geologie, 20. September 2006, Clausthal-Zellerfeld, D.
- BVT (1981): Bergverordnung für Tiefbohrungen und für die Gewinnung von Bodenschätzen durch Bohrungen (Tiefbohrverordnung BVT). Hessische Oberbergamt, 3. August 1981, StAnz. S. 1696, StAnz. 1983 S. 1282, Wiesbaden, D.
- Cloet, V. & Traber, D. (2015): Evaluation of suitability of cement backfill for deep boreholes. Nagra Arbeitsber. NAB 15-50.
- Deplazes, G., Bläsi, H.R., Schnellmann, M. & Traber, D. (2013): Sedimentologie und Stratigraphie der Effinger Schichten. Nagra Arbeitsber. NAB 13-16.
- ENSI (2009): Richtlinie für die schweizerischen Kernanlagen (ENSI-G03/d): Spezifische Auslegungsgrundsätze für geologische Tiefenlager und Anforderungen an den Sicherheitsnachweis. Ausgabe April 2009. ENSI, Villigen.
- Frank, S. (1995): Reflexionsseismik Opalinuston: Quell- und Grundwasserüberwachungsprogramm Katasteraufnahme. Unpubl. Nagra Interner Ber.
- Frieg, B., Gassler, W. & Jäggi, K. (2002a): KRI Tiefbohrung Leuggern: Verfüllungsbericht. Unpubl. Nagra Interner Ber.
- Frieg, B., Gassler, W. & Jäggi, K. (2002b): KRI Tiefbohrung : Verfüllungsbericht. Unpubl. Nagra Interner Ber.
- Frieg, B., Gassler, W., Jäggi, K. & Albert, W. (2002c): KRI Tiefbohrung Böttstein: Verfüllungsbericht. Unpubl. Nagra Interner Ber.
- Frieg, B., Gassler, W., Jäggi, K. & Albert, W. (2002d): KRI Tiefbohrung Weiach: Verfüllungsbericht. Unpubl. Nagra Interner Ber.
- Frieg, B., Gassler, W. & Jäggi, K. (2004): Sondierstandort Wellenberg: Verfüllungsbericht der Sondier- und Piezometerbohrungen. Unpubl. Nagra Interner Ber.

- Frieg, B., Pingel, R. & Gassler, W. (2008):Tiefe Erdsondenbohrung NOK Unterwerk Oftringen Bohrtechnik. Nagra Arbeitsber. NAB 08-21.
- Gassler, W. & Karsch, H. (1996): Sondierbohrungen Wellenberg SB1, SB2, SB3, SB4, SB4a/v, SB4a/s und SB6 Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 94-09.
- Gassler, W. & Macek, A. (1994): Sondierbohrung Siblingen Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 90-38.
- Gaus, I., Vomvoris, S., Rueedi, J., Frieg, B. & Sakaki, T. (2012): Long term stability of potential system components for sealing deep investigation boreholes Experiences and approaches at Nagra. Nagra Project Report. Commercial-in-confidence.
- Gemeinde Rheinau (2012): Bau- und Zonenordnung [BZO]. Gemeinde Rheinau vom 31. Oktober 2012 (Regierungsrat, Beschluss Nr. 1104).
- Gimmi, Th. & Waber, H.N. (2004): Modelling tracer profiles in pore water of argillaceous rocks in the Benken borehole: Stable water isotopes, chloride, and chlorine isotopes. Nagra Tech. Ber. NTB 04-05.
- GIS-ZH (2016): Geographisches Informationssystem des Kantons Zürich. http://maps.zh.ch/ Stand 2016.
- Graf, H.R. (2009a): Stratigraphie von Mittel- und Spätpleistozän in der Nordschweiz. Beitr. geol. Karte Schweiz NF. 168, 198 S.
- Graf, H.R. (2009b): Stratigraphie und Morphogenese von frühpleistozänen Ablagerungen zwischen Bodensee und Klettgau. Eiszeitalter und Gegenwart 58/1, 12-53.
- GVM-ZH (2014): Gesamtverkehrsmodell des Kantons Zürich. http://www.geolion.zh.ch/geodatenservice/show?nbid=1027
- Häusler, S. & Salm, Ch. (2001): Leitfaden Nummer 10 Bodenschutz beim Bauen. Bundesamt für Umwelt BAFU, Bern.
- Hofmann, F. (1967): Geologischer Atlas der Schweiz 1:25'000, Blatt 1052 Andelfingen, mit Erläuterungen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).
- Hofmann, F. (1981): Geologischer Atlas der Schweiz 1:25'000, Blatt 1031 Neunkirch, mit Erläuterungen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).
- Hübscher, J. (1961): Geologischer Atlas der Schweiz 1:25'000, Blatt 1032 Diessenhofen. Bundesamt für Landestopografie swisstopo, Wabern (Bern).
- ISO DIN 4150-2 (1999): Erschütterungen im Bauwesen Teil 2: Einwirkungen auf Menschen in Gebäuden.
- Jäggi, K. & Frieg, B. (2010): OPA: Sondierbohrung Benken: Langzeitbeobachtung 2009, Dokumentation der Messdaten. Nagra Arbeitsber. NAB 10-28.
- Jordan, P., Malz, A., Heuberger, S., Pietsch, J., Kley, J. & Madritsch, H. (2015): Regionale geologische Profile durch die Nordschweiz und 2D-Bilanzierung der Fernschubdeformation im östlichen Faltenjura: Arbeitsbericht zu SGT Etappe 2. Nagra Arbeitsber. NAB 14-105.

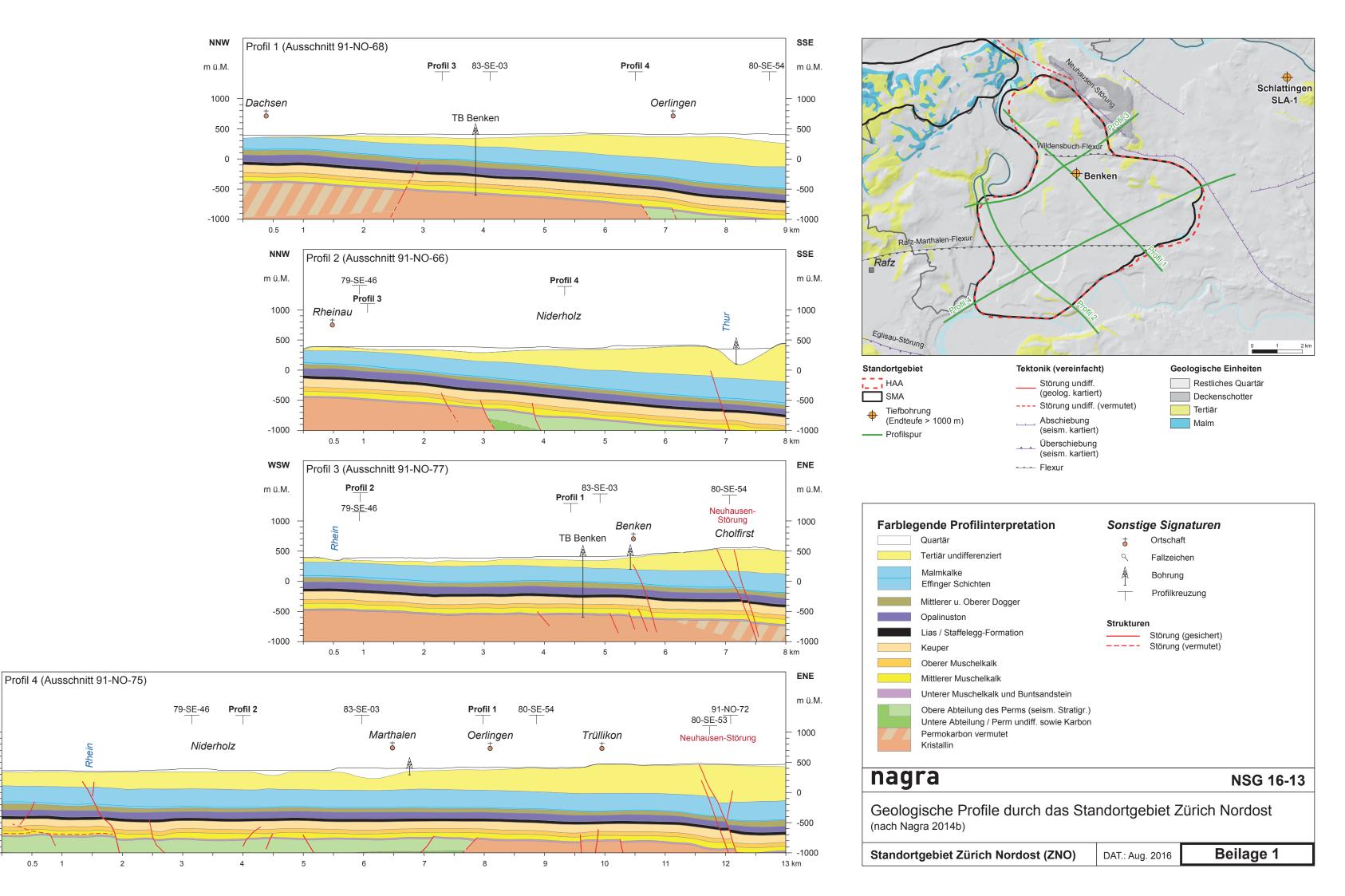
- Kempf, Th., Freimoser, M., Haldimann, P., Longo, V., Müller, E., Schindler, C., Styger, G. & Wyssling, L. (1986): Die Grundwasservorkommen im Kanton Zürich. Beitr. zur Geol. der Schweiz, Geotechn. Serie, Lfg. 69.
- Kraft, T., Herrmann, M. & Diehl, T. (2016): Analyse der Mikrobebenaktivität im Rahmen des Geothermieprojektes Schlattingen. Nagra Project Report. Commercial-in-confidence.
- Kt. Zürich (2015): Richtplan des Kantons Zürich vom 20. September 2011 (Stand 18. September 2015).
- Macek, A. & Gassler, W. (2001): Sondierbohrung Benken Bohrtechnik, Bau- und Umweltaspekte. Nagra Tech. Ber. NTB 99-12.
- Madritsch (2015): Outcrop-scale fracture systems in the Alpine foreland of central northern Switzerland: kinematics and tectonic context. Swiss Journal of Geosciences 108/2, 155-181.
- Madritsch, H. & Hammer, P. (2012): Characterisation of Cenozoic brittle deformation of potential geological siting regions for radioactive waste repositories in Northern Switzerland based on structural geological analysis of field outcrops. Nagra Arbeitsber. NAB 12-41.
- Madritsch, H., Meier, B., Kuhn, P., Roth, Ph., Zingg, O., Heuberger, S., Naef, H. & Birkhäuser, Ph. (2013): Regionale strukturgeologische Zeitinterpretation der Nagra 2D-Seimik 2011/12. Nagra Arbeitsber. NAB 13-10.
- Marchant, R., Ringgenberg, Y., Stampfli, G., Birkhäuser, P., Roth, P. & Meier B. (2005): Paleotectonic evolution of the Zürcher Weinland based on 2D and 3D seismics in Northern Switzerland. Eclogae Geol. Helv. 98, 345-362.
- Matter, A., Peters, T., Bläsi, H.-R., Meyer, J., Ischi, H. & Meyer, C. (1988): Sondierbohrung Weiach Geologie. Nagra Tech. Ber. NTB 86-01.
- Meier, B. & Deplazes, G. (2014): Reflexionsseismische Analyse des 'Braunen Doggers'. Nagra Arbeitsber. NAB 14-58.
- Meier, B., Kuhn, P., Muff, S., Roth, Ph. & Madritsch, H. (2014): Tiefenkonvertierung der regionalen Strukturinterpretation der Nagra 2D-Seismik 2011/12. Nagra Arbeitsber. NAB 14-34.
- Müller, W.H., Naef, H. & Graf, H.R. (2002): Geologische Entwicklung der Nordschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland. Nagra Tech. Ber. NTB 99-08.
- Naef, H. & Deplazes, G. (2016): Stratigraphische Korrelation der Standortgebiete in der Nordschweiz: Grundlagen zu den Profildarstellungen im NTB 14-02, Dossier II: Sedimentologische und tektonische Verhältnisse. Nagra Arbeitsber. NAB 15-44.
- Naef, H. & Madritsch, H. (2014): Tektonische Karte des Nordschweizer Permokarbontrogs: Aktualisierung basierend auf 2D-Seismik und Schweredaten. Nagra Arbeitsber. NAB 14-17.
- Nagra (1985): Sondierbohrung Böttstein Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 85-12.

- Nagra (1986a): Sondierbohrung Weiach Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 86-06.
- Nagra (1986b): Sondierbohrung Riniken Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 86-07.
- Nagra (1986c): Sondierbohrung Schafisheim Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 86-08.
- Nagra (1986d): Sondierbohrung Kaisten Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 86-09.
- Nagra (1986e): Sondierbohrung Leuggern Bau- und Umweltaspekte, Bohrtechnik. Nagra Tech. Ber. NTB 86-10.
- Nagra (1989): Sondierbohrung Weiach Untersuchungsbericht. Nagra Tech. Ber. NTB 88-08.
- Nagra (1990): Sondierbohrung Riniken Untersuchungsbericht. Nagra Tech. Ber. NTB 88-09.
- Nagra (1992): Sondierbohrung Schafisheim Untersuchungsbericht. Nagra Tech. Ber. NTB 88-11.
- Nagra (2001): Sondierbohrung Benken Untersuchungsbericht. Nagra Tech. Ber. NTB 00-01.
- Nagra (2002a): Projekt Opalinuston: Synthese der geowissenschaftlichen Untersuchungsergebnisse Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Nagra Tech. Ber. NTB 02-03.
- Nagra (2002b): SMA/WLB Bohrlochversiegelung/-verfüllung SB4a/schräg. Nagra Tech. Ber. NTB 02-24.
- Nagra (2008): Vorschlag geologischer Standortgebiete für das SMA- und das HAA-Lager Geologische Grundlagen. Nagra Tech. Ber. NTB 08-04.
- Nagra (2014a): SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage: Sicherheitstechnischer Bericht zu SGT Etappe 2: Sicherheitstechnischer Vergleich und Vorschlag der in Etappe 3 weiter zu untersuchenden geologischen Standortgebiete. Nagra Tech. Ber. NTB 14-01.
- Nagra (2014b): SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage Geologische Grundlagen. Dossiers I bis VII. Nagra Tech. Ber. NTB 14-02.
- Nagra (2014c): Konzepte der Standortuntersuchungen für SGT Etappe 3. Nagra Arbeitsber. NAB 14-83.
- Nagra (2014d): SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage. Charakteristische Dosisintervalle und Unterlagen zur Bewertung der Barrierensysteme. Nagra Tech. Ber. NTB 14-03.

- Nagra (2015a): Evaluation der Auswirkungen der für Etappe 3 geplanten Sondierbohrungen in den Standortgebieten Jura Ost und Zürich Nordost auf die sicherheitstechnische Eignung dieser Standortgebiete. Nagra Arbeitsber. NAB 15-39.
- Nagra (2015b): Elektronischer Daten- und Resultateordner (EDR) für Modellrechnungen zur Radionuklidfreisetzung bei einem tiefen Bohrloch in unmittelbarer Nähe eines geologischen Tiefenlagers. Nagra Arbeitsber. NAB 15-38.
- Nagra (2016): ENSI-Nachforderung zum Indikator "Tiefenlage im Hinblick auf bautechnische Machbarkeit" in SGT Etappe 2 Zusammenfassende Darstellung der Zusatzdokumentation (Hauptbericht). Nagra Arbeitsber. NAB 16-41.
- Natur- und Landschaftsschutzinventar (1980): Inventar der überkommunal bedeutenden Natur- und Landschaftsschutzobjekte des Kantons Zürich 1980 (Inventar80).
- Pietsch, J. & Jordan, P. (2014): Digitales Höhenmodell Basis Quartär der Nordschweiz Version 2014 und ausgewählte Auswertungen. Nagra Arbeitsber. NAB 14-02.
- Plenkers, K. (2014): Das neue Schwachbebennetz in der Nordschweiz: Standortsuche, Standortauswahl, realisierte Stationen. Nagra Arbeitsber. NAB 14-56.
- Poller, A., Mayer, G. & Hayek, M. (2015): Modellrechnungen zur Radionuklidfreisetzung bei einem tiefen Bohrloch in unmittelbarer Nähe eines geologischen Tiefenlagers. Nagra Arbeitsber. NAB 15-13.
- Pusch, R., Börgesson, L. & Ramqvist, G. (1987): Final report of the borehole, shaft and tunnel sealing test Volume 1: Borehole plugging. Nagra Tech. Ber. NTB 87-25.
- Pusch, R., Karnland, O., Hökmark, H., Sanden, T. & Börgesson, L. (1991): Final report of the Rock Sealing Project Sealing properties and longevity of smectitic clay grouts. SKB Technical Report, Stripa Project, 91-30, December 1991. SKB Svensk Kärnbränslehantering AB, Stockholm.
- Ringgenberg, Y. (2001): Interprétation sismique 3D dans le Zürcher Weinland (CH): paléotectonique et discordance Malm-Tertiaire. Dipl. d'étude approfondie (DEA). Univ. Lausanne.
- Rothfuchs, T., Czaikowski, O., Hartwig, L., Hellwald, K., Komischke, M., Miehe, R. & Zhang, C.-L. (2013): SB Experiment Self-Sealing Barriers of Sand/Bentonite Mixtures in a Clay Repository. Mt. Terri Technical Report 2009-03. Bundesamt für Landestopografie swisstopo, Bern.
- Rybarczyk, G. (2012): Abschlussbericht des Reprozessings der regionalen seismischen Profildaten in der Nordschweiz. Unpubl. Nagra Interner Ber.
- Rybarczyk, G. (2013): Seismische Datenverarbeitung der Nagra 2D-Seismik 2011/12 in Zeit. Nagra Arbeitsber. NAB 13-09.
- Rybarczyk, G. (2014): Seismische Datenbearbeitung der Nagra 2D-Seismik 2011/12 in Tiefe. Nagra Arbeitsber. NAB 13-80.

- Schweizer Armee (2006): Technische Belange der Schiessanlagen für das Schiesswesen ausser Dienst (Weisungen für Schiessanlagen). Schweizer Armee Dokumentation 51.065 a. ALN 293-0357, SAP 2531.9935. Stand am 01.10.2006.
- SIA (1993): SN 509 430 Entsorgung von Bauabfällen. Schweiz. Ingenieur- und Architektenverein SIA, Zürich.
- SIA (1997): SN 509 431 Entwässerung von Baustellen. Schweiz. Ingenieur- und Architektenverein SIA, Zürich.
- SIA (2013): SN 586 491 Vermeidung unnötiger Lichtemissionen im Aussenraum. Schweiz. Ingenieur- und Architektenverein SIA, Zürich.
- Sperber, A. & Frieg, B. (2015): Geothermiebohrung Schlattingen SLA-1 Bohrtechnik. Nagra Project Report. Commercial-in-confidence.
- SUVA (2011): Richtlinien für den Einsatz von Kranen und Baumaschinen im Bereich elektrischer Freileitungen. Form 1863.d: Ausgabe 12.1972.
- Thury, M., Gautschi, A., Mazurek, M., Müller, W.H., Naef, H., Pearson, F.J., Vomvoris, S. & Wilson, W. (1994): Geology and hydrogeology of the crystalline basement of Northern Switzerland. Synthesis of regional investigation 1981 1993 within the Nagra Radioactive Waste Disposal Programme. Nagra Tech. Ber. NTB 93-01.
- VÖV (2012): Sicherheit bei Arbeiten im Bereich von Bahnstromanlagen der SBB Reglement RTE 20600 (Version ab 1. Juli 2012).
- VSS (1999): Erdbau, Boden: Erfassung des Ausgangszustandes, Triage des Bodenaushubs. Schweizer Norm SN 640 582. Schweizerischer Verband der Strassen- und Verkehrsfachleute VSS, Zürich.
- VSS (2000): Erdbau, Boden: Eingriff in den Boden, Zwischenlagerung, Schutzmassnahmen, Wiederherstellung und Abnahme. Schweizer Norm SN 640 583. Schweizerischer Verband der Strassen- und Verkehrsfachleute VSS, Zürich.
- Waber, H.N., Lorenz, G. & Eichinger, F. (2014a): Geothermiebohrung Schlattingen-1: Evaluation der Wasserproben. Mit Beiträgen von D. Traber & B. Frieg. Nagra Project Report. Commercial-in confidence.
- Waber, H.N., Heidinger, M., Lorenz, G. & Traber, D. (2014b): Hydrochemie und Isotopenhydrogeologie von Tiefengrundwässern in der Nordschweiz und im angrenzenden Süddeutschland. Nagra Arbeitsber. NAB 13-63.
- Wersin, P., Mazurek, M., Waber, H.N., Mäder, U.K., Gimmi, T., Rufer, D. & De Haller, A. (2013): Rock and porewater characterisation on drillcores from the Schlattingen borehole. Nagra Arbeitsber. NAB 12-54.

Anhang A: Liste der verwendeten GIS-Daten Rheinau


(Stand der Daten 30.06.2016)

Dateiname	nteiname Beschreibung		Datenlieferant	
bln2010.shp	Bundesinventar der Landschaften und Naturdenkmäler von nationaler Bedeutung (BLN)	2010	BAFU	
smaragd	Bundesinventar der Smaragd- gebiete von nationaler Bedeutung	2010	BAFU	
ra	Bundesinventar der Ramsar- gebiete von nationaler Bedeutung	2010	BAFU	
WV	Bundesinventar der Wasser- und Zugvogelreservate von nationaler Bedeutung	2010	BAFU	
tww / TWW_A2	Bundesinventar der Trockenwie- sen und -weiden von nationaler Bedeutung	2010	BAFU	
ml	Bundesinventar der Moorland- schaften von nationaler Bedeutung	2010	BAFU	
jb	Bundesinventar der Jagdbann- gebiete von nationaler Bedeutung	2010	BAFU	
hm	Bundesinventar der Hochmoore von nationaler Bedeutung	2010	BAFU	
fm	Bundesinventar der Flachmoore von nationaler Bedeutung	2010	BAFU	
au	Bundesinventar der Auen von nationaler Bedeutung	2010	BAFU	
am_l	Bundesinventar der Amphibien- laichgebiete von nationaler Bedeu- tung	2010	BAFU	
ko_überreg	Wildtierkorridor von überregio- naler Bedeutung		BAFU	
ko_regio	gio Wildtierkorridor von regionaler Bedeutung		BAFU	
Bauzonen_NAGRA.shp	zonen_NAGRA.shp Bauzonen Schweiz		Bundesamt für Raumentwicklung ARE	
ivs_linienobjekte.shp	Bundesinventar der historischen Verkehrswege der Schweiz	2010	Bundesamt für Strassen (ASTRA), Bereich Langsam- verkehr	
ISOS_font_point.shp	Bundesinventar der schützens- werten Ortsbilder der Schweiz von nationaler Bedeutung	2010	Bundesamt für Kultur	
ghk_hmur_zh.shp	Gefahrenhinweiskarte – Hang- muren	2013	Kanton Zürich	

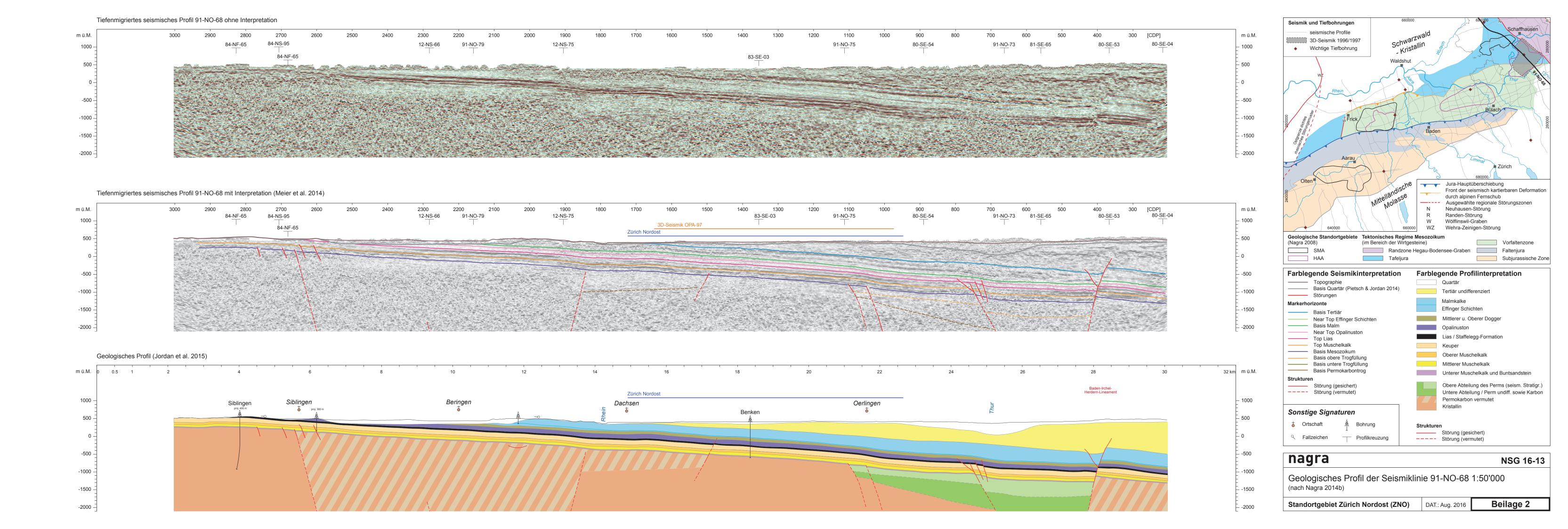
Dateiname	Beschreibung		Datenlieferant	
ghk_spon_zh	Gefahrenhinweiskarte – Spontan- rutschungen		Kanton Zürich	
ghk_mura_zh.shp	Gefahrenhinweiskarte Murablagerungen	2013	Kanton Zürich	
ghk_murg_zh.shp	Gefahrenhinweiskarte Murgang- prozesse in Gerinnen	2013	Kanton Zürich	
ghk_stur_zh.shp	Gefahrenhinweiskarte Sturz- prozesse Stein- und Blockschlag	2013	Kanton Zürich	
GISZHPUB_WB_SYN_GK_F .shp	Synoptische Gefahrenkarte	2016	Kanton Zürich	
GISZHPUB_WB_SYN_ PERIMETER_F.shp	Perimeter Gefahrenkarte	2016	Kanton Zürich	
GefKarte_64_synoptische_ Gefahrenkarte.shp	Synoptische Gefahrenkarte	2016	Kanton Schaffhausen	
rutschung_geologische_karte_tg .shp	Gefahrenhinweiskarte Rutschgebiete	2012	Kanton Thurgau	
GISZHPUB_FJ_WTK_ACHSEN _NATIONAL_F.shp	Nationale Ausbreitungsachsen	2012	Kanton Zürich	
GISZHPUB_FJ_WTK_ PERIMETER_F.shp			Kanton Zürich	
INV80_LGEOMORPH_F.shp	Geomorphologisch bedeutende Objekte	2012	Kanton Zürich	
GRUNDWASSERFASSUNGEN _P.shp	Grundwasserfassungen	2015	Kanton Zürich	
GS_GEWSCHUTZBEREICH_ AU_F.shp	Gewässerschutzbereich A _u	2012	Kanton Zürich	
geo_wasser_ugsber_ gewaesserschutzbereiche.shp	Gewässerschutzbereich A _u	2012	Kanton Thurgau	
gew_schutz_bereich.shp	Gewässerschutzbereich A _u	2011	Kanton Schaffhausen	
GISZHPUB_WB_ FLIESSGEWAESSER_L_M.shp	Öffentliche Oberflächengewässer / Fliessgewässer	2013	Kanton Zürich	
gewaesserkataster_gewaesserart .shp	Gewässerkataster	2016	Kanton Thurgau	
GISZHPUB_WB_SEEN_L.shp	Öffentliche Oberflächengewässer / Seen	2013	Kanton Zürich	
GISZHPUB_WB_GEWAESSER AUSPRAEGUNG_L.shp	Öffentliche Oberflächengewässer / Bachläufe offen/eingedolt	2016	Kanton Zürich	
GISZHPUB_GS_SCHUTZZONE _TEILFLAECHEN_F.shp	Grundwasserschutzzonen	2015	Kanton Zürich	
GS_SCHUTZAREALE_F.shp	Grundwasserschutzareale	2012	Kanton Zürich	
GISZHPUB_FJ_WTK_ACHSEN _REGIONAL_F.shp	Perimeter der regionalen Ausbreitungsachse	2012	Kanton Zürich	
NSO_2011_KANTONAL_F_V .shp	Naturschutzobjektfläche kantonaler Richtplan	2016	Kanton Zürich	

Dateiname	Beschreibung	Zeit- stand	Datenlieferant
NSO_2011_REGIONAL_F_V .shp	Naturschutzobjektfläche regionaler Richtplan	2016	Kanton Zürich
GISZHPUB_GS_GW_LEITER_ F.shp	Mächtigkeit Grundwasserleiter	2015	Kanton Zürich
AWEL_AW_AL_KBS_F.shp	Kataster der belasteten Standorte (KbS)	2016	Kanton Zürich
ARV_KAZ_ARCHZONEN_F_ polygon.shp	Archäologische Zonenpläne	2015	Kanton Zürich
GISZHPUB_SLA_LASCHUTZ_F .shp	Landschaftsschutzgebiete und Landschaftsfördergebiete	2015	Kanton Zürich
richtplanung_rlsvrang.shp	Gebiete mit Vorrang Landschaft (Richtplan TG)	2012	Kanton Thurgau
nutz_ubes_10.shp	Zonenpläne	2012	Kanton Zürich
rzpgnzon_grundnutzungszonen .shp	Zonenpläne	2013	Kanton Thurgau
SH_NAR_PNA_ZP*.shp	Zonenpläne	2012	Kanton Thurgau
QUELLFASSUNGEN_P.shp	Quellfassungen	2015	Kanton Zürich
quellen.shp	Quellfassungen	2009	Kanton Schaffhausen
reb1990.shp	Rebberg	2013	Kanton Zürich
STR_ACHS_L.shp	Staatsstrassen	2015	Kanton Zürich
ALN_FABO_FFF_F.shp	Fruchtfolgeflächen (FFF)	2015	Kanton Zürich
fruchtfolgeflaechen.shp	Fruchtfolgeflächen (FFF)	2012	Kanton Thurgau
gasleitungen.shp	Erdgasleitung	2014	Kanton Zürich
Nagra_BohrungsDB_20160118 .mdb	_BohrungsDB_20160118 Bohrungsdatenbank		Nagra
CRS_CDP_111214_Lines.shp / Seismische Linien CDP_2D11_12.shp		2011/ 2012	Nagra
Q_20.shp	Basis Quartär	2008	Nagra
Betrachtungsraum_ Interessenabwaegung.shp	Betrachtungsraum der Interessenabwägung	2016	Nagra
regio090129n.shp	Geologisches Standortgebiet	2011	Nagra
bohrplaetze_jo_zno.shp	Standortareal	2016	Nagra
dtm10_znsr_sp	Hangneigung in Prozent, Stand- ortgebiet Zürich Nordost	2014	Nagra
Standort_Bohrturm	Standort des Bohrturms innerhalb des Bohrplatzes	2016	Nagra
Moegl_Einflussbereich	Möglicher Einflussbereich der Bohrung im Untergrund	2016	Nagra
LP_FINAL_141216aktiv	Lagerperimeter	2016	Nagra
LP_HAAZNO_erg_manuell_ 151023.shp	Ergänzender Lagerperimeter	2016	Nagra
Weitere_Tekt_Zonen20150824	Tektonik Zürich Nordost	Nagra	

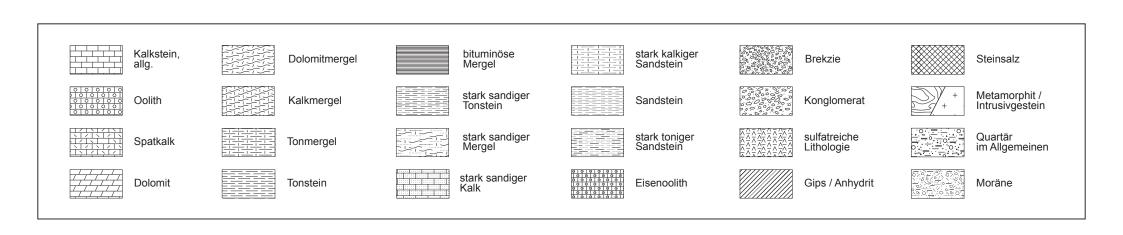
ateiname Beschreibung		Zeit- stand	Datenlieferant
RegStoer_KTZ_Puffer_20141021	Tektonik Nordschweiz	2016	Nagra
Swissgridnetz_AG_ZH	Stromleitungen	2016	Swissgrid
NAGRA_Netz.dwg	Stromleitungen	2015	EKZ
20160317_Leitung_Axpo	Stromleitungen	2015	Axpo
NEUNKIRCH_POLYGON_ MAIN.shp / NEUNKIRCH_ POLYGON_AUX.shp	Geol. Hauptflächenelemente – Geo25 (Vektordaten) Neunkirch	2010	swisstopo
ANDELFINGEN_POLYGON_ MAIN.shp / ANDELFINGEN_ POLYGON_AUX.shp	Geol. Hauptflächenelemente – Geo25 (Vektordaten) Andelfingen	2010	swisstopo
EGLISAU_POLYGON_MAIN .shp / EGLISAU_POLYGON_ AUX.shp	Geol. Hauptflächenelemente – Geo25 (Vektordaten) Eglisau	2010	swisstopo
DIESSENHOFEN_POLYGON_ MAIN.shp / DIESSENHOFEN_ POLYGON_AUX.shp	Geol. Hauptflächenelemente – Geo25 (Vektordaten) Diessen- hofen	2010	swisstopo
komb1031.tif	Pixelkarte Topographie 1:25'000	2013	swisstopo
komb1032.tif	Pixelkarte Topographie 1:25'000	2013	swisstopo
komb1051.tif	Pixelkarte Topographie 1:25'000	2013	swisstopo
komb1052.tif	Pixelkarte Topographie 1:25'000	2013	swisstopo
krel27.tif	Pixelkarte Topographie 1:100'000	2004	swisstopo
krel28.tif	Pixelkarte Topographie 1:100'000	2004	swisstopo
TLM_HOHEITSGRENZE.shp	Administrative Grenzen	2014	swisstopo
TLM_FLIESSGEWAESSER.shp	TLM 3D Fliessgewässer	2015	swisstopo
TLM_EISENBAHN.shp	EISENBAHN.shp TLM 3D Eisenbahnlinien		swisstopo
TLM_STRASSE.shp	TLM 3D Strassennetz	2015	swisstopo
TLM_GEBAEUDE_FOOTPRINT .shp	TLM 3D Gebäude	2015	swisstopo
VECTOR200_Produkt_LV03.mdb	Vector 200	2015	swisstopo
mm0001	Digitales Höhenmodell DHM25	2010	swisstopo
ganze_gmd_nagra.dwg	Werkkataster Wasser / Abwasser Marthalen	asser 2015 Bachmann Steger mann + Partner A	
123116_0000_151005-2.dxf	Werkkataster Wasser Rheinau	2015	Walter Leisinger AG
123116_0000_151005-1.dxf	Werkkataster Abwasser Rheinau	2015	Walter Leisinger AG

WSW

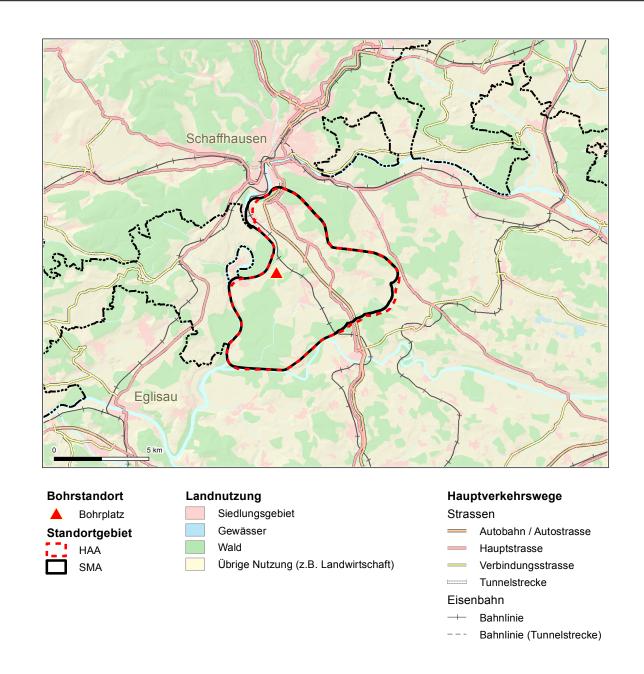
m ü.M.


1000

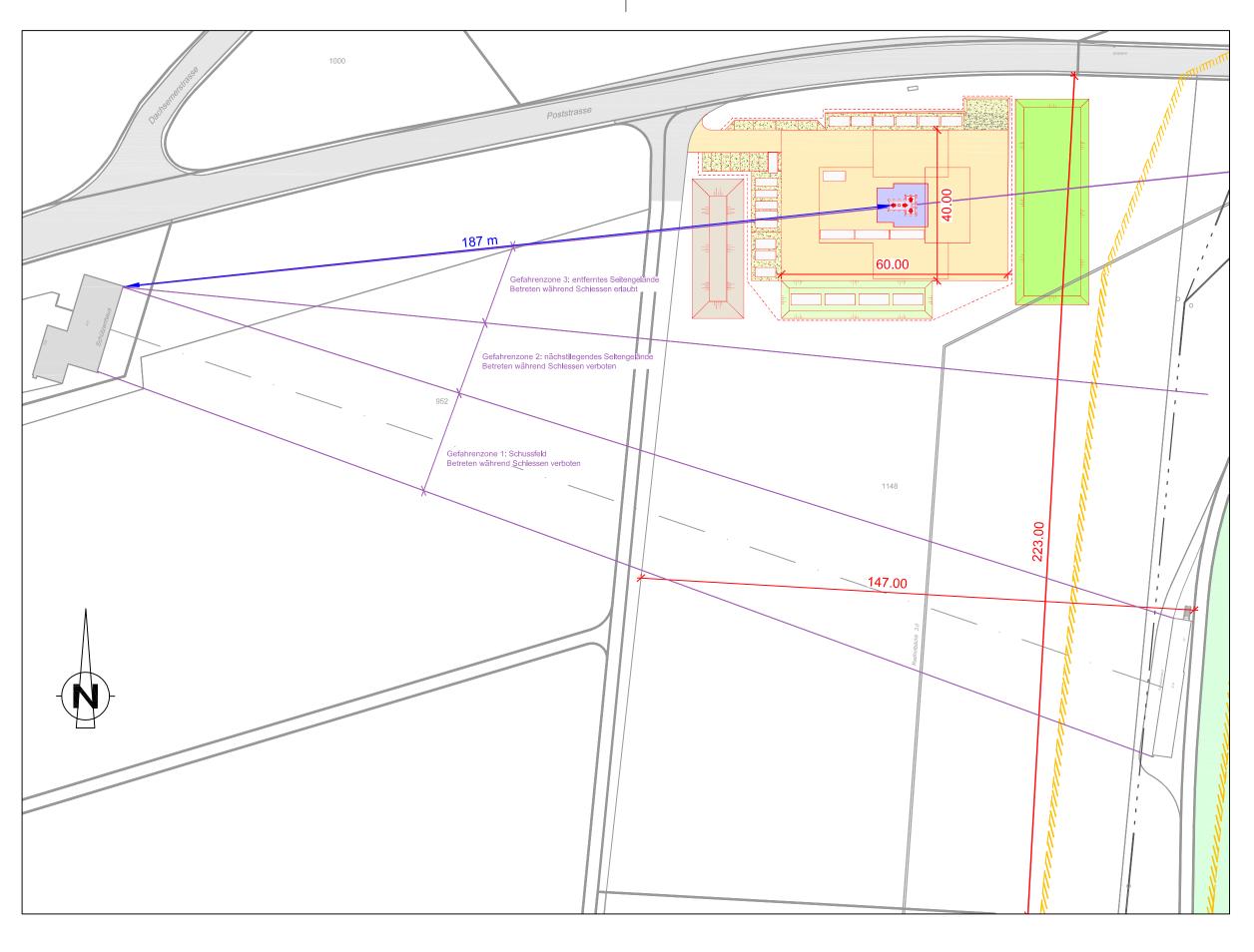
500

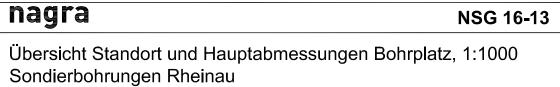

-500

-1000

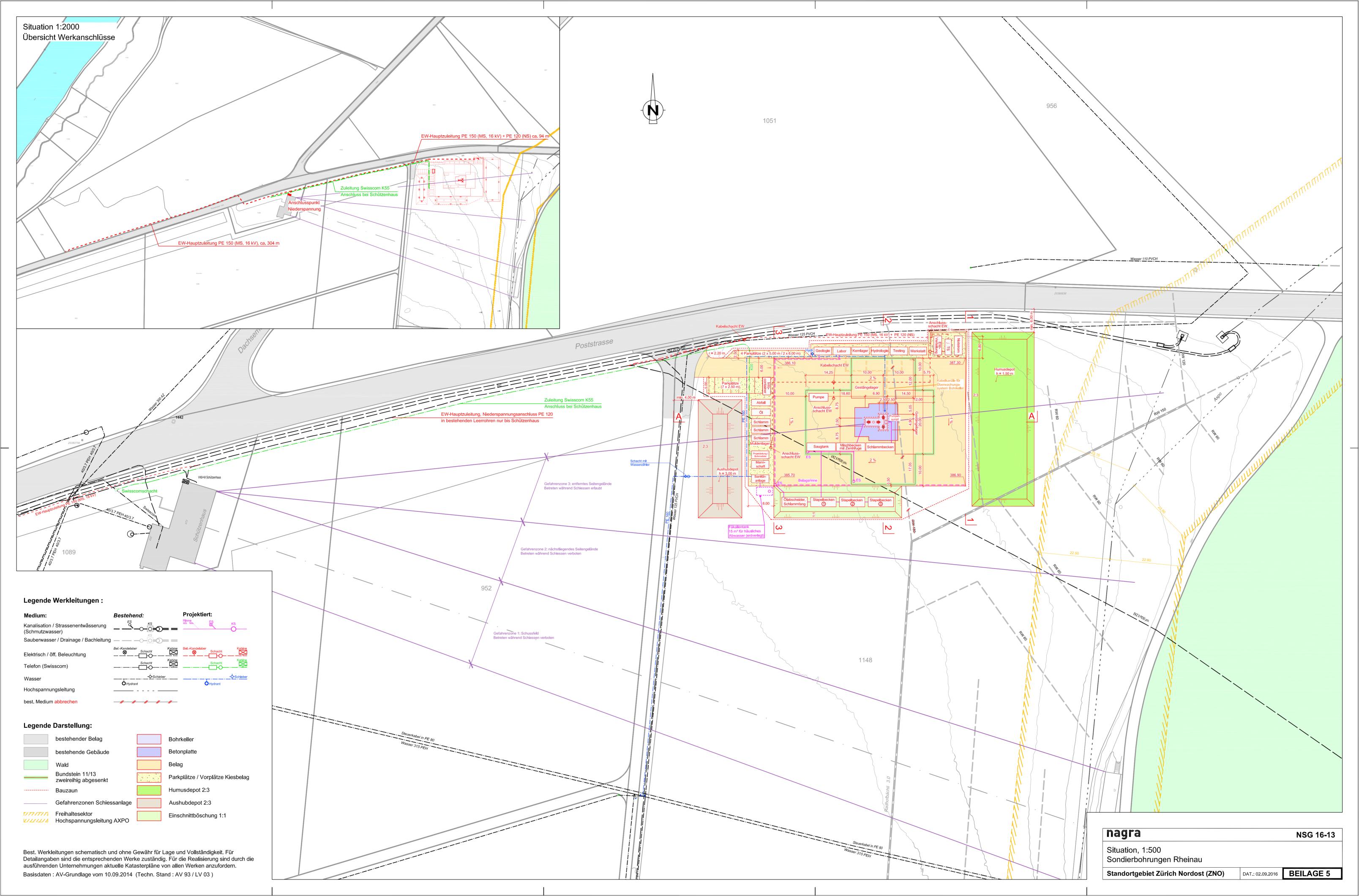

0.5

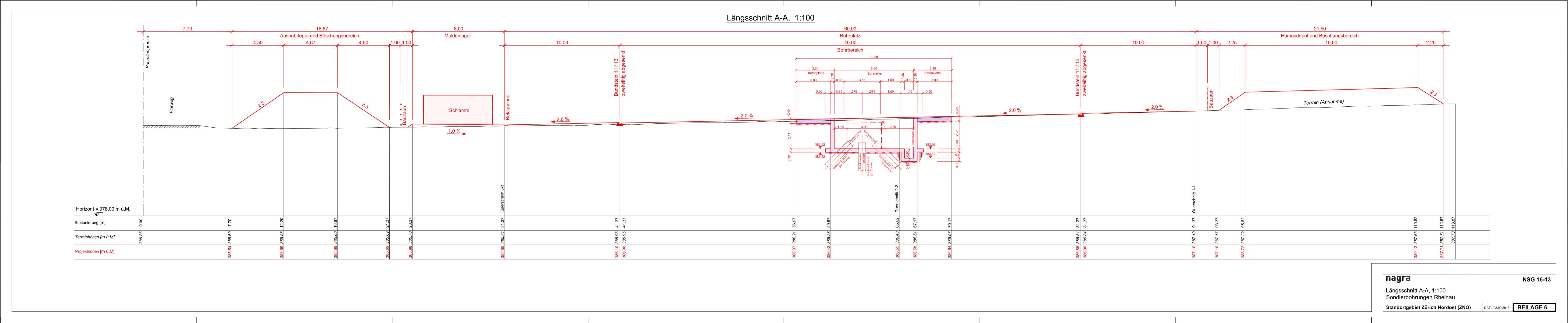
			Lithostratigraphie		Chronostratigraphie			
[m]			Member	Formation	Gruppe	Frühere Bezeichnung (Auswahl)	Stufe	Serie / System
15		Silte und Sande, Deckschichten eher kiesig	Birrfeld	Niederterrasse				Pleistozän
120		Bunte Mergel im Wechsel mit Silt- und Sandsteinen			USM II	"Aquitanien"	Aquitanien	
		Boluston mit Bohnerz			USM I Siderolithikum	"Chattien"	Chattien	Oligozän Eozän
		Helle, plattige, mikritische Kalksteine, z.T. massige Kalke Dunkle, vorwiegend mikritische, silt- und tonführende Kalksteine		Bankkalke / Massenkalk		Plattenkalk / Massenkalk		
285		Hellbeige und weissliche, mikritische Kalksteine (Quaderkalk) und zuckerkörnige, massige Kalke; teilweise auch Kalkarenite und wenig glaukonitführende Kalkmergel		Felsenkalke / Massenkalk	Malm	Quaderkalk / Massenkalk	Kimme- ridgien	Später
		Mikritische Kalksteine im Wechsel mit Kalkmergeln Deutlich geschichtete, hell- bis beigegraue, mikritische Kalksteine mit tonigen oder mergeligen Zwischenlagen,	Wangental	Schwarzbach		Mittl. Malmmergel Wohlgeschichtete Kalke		
		teilweise biodetritisch Mikritische Kalke bis Schwammkalke im Wechsel mit Mergeln Dunkelgraue, teils siltige Kalkmergel mit Kalkbänken	Hornbuck Effingen	Wildegg		Hornbuck-Sch. Effinger Sch.	Oxfordien	Jura
80		Graue, siltig-feinsandige Tonmergel und Tonsteine		ParkWürtt Schichten		"Oberer Dogger" Württembergica-S. Parkinsoni-Sch.	Callovien Bathonien	
		Eisenoolithe und siltig-sandige Mergel, biodetritisch Graue siltig-sandige Mergel und sandige Kalke, biodetritisch Eisenoolithischer Kalkstein		Humphroolith Wedelsandst. MurchOolith		Blagdeni-Sch. Humphriesi-Sch. Murchisonae-Sch.	Bajocien	Mittlerer
110		Dunkelgraue, kalkige, siltige Tonsteine mit Siltstein- und kalkigen Sandsteinlagen		Opalinuston	Dogger	Opalinuston	Aalenien	Mi
40		Graue Kalkmergel, darunter Tonmergel, knollige Kalke Siltige, glimmerführende Tonsteine Biodetritische Kalke, siltig-feinsandige Tonsteine und Mergel	Gross Wolf bis Schambelen	Staffelegg	Lias	Jurensis- bis Psiloceras-Sch.	Toarcien bis Hettangien	Früher
45		Bunte dolomitische Mergel, Sand- und Siltsteine, Dolomite, vereinzelt Sulfat	Gruhalde Seebi Gansingen Ergolz	Klettgau		Knollenmergel bis SchilfsandstFm.	Norien	Späte
70		mit knolligen Anhydritlagen Dolomitische Tonmergel und Tonsteine im Wechsel mit knolligen Anhydritlagen bis massigen Anhydritbänken		Bänkerjoch	Keuper	Gipskeuper	Carnien	&
70		Poröse Dolomite und dunkle Tonschiefer mit Bonebeds Massige, beige-graue Dolomite, mikritisch, mit Lösungsporen, Muschelschilllagen Graue, mikritische, gebankte Kalksteine, z.T. dolomitisch,	Asp	Schinznach		Lettenkohle Trigonodus- Dolomit Hauptmuschelkalk	Ladinien	Tria
70		Beigebraune, gebänderte Dolomite mit Lösungsporen & Anhy. Graue bis weisse, gebänderte bis massige Anhydrite mit Tonstein- und dolomitischen Tonmergel-Zwischenlagen Rötliches Steinsalz durchsetzt mit Tonstein und Anhydrit Geschichteter Anhydrit mit Dolomit-Zwischenlagen		Zeglingen	Muschelkalk	Dolomit der Anhydritgruppe Ob. Sulfatschichten Salzschichten Unt. Sulfatschichten	Anisien	Mittlere
45		Siltig-sandige Mergel mit Muschelschill und Anhydrit Siltig-sandige Tonsteine, teils kalkig mit Feinsandsteinlagen Weisse bis grünliche Sandsteine mit Tonsteinlagen		Kaiseraugst Dinkelberg	Buntsandstein	Orbicularismergel bis Wellendolomit	Olenekien	Fr.
	+ + + + + + + + + + + + + + + + + + +	Geringmächtige Ablagerungen des Perms möglich Granit / Gneis						Karbo
	120 285 80 110 40 45 70 70	285 80 110 40 70 70	Bunte Mergel im Wechsel mit Silt- und Sandsteinen Boluston mit Bohnerz Helle, plattige, mikritische Kalksteine, z.T. massige Kalke Dunkle, vorwiegend mikritische, silt- und torführende Kalksteine im Wechsel mit Kalkmergel und zuckerkörnige, massige Kalke; tellweise auch Kalkarenite kalkstein ein Utonigen oder mergeligen Zwischerlagen, tellweise bioderfrisch Kalkstein ein Utonigen oder mergeligen Zwischerlagen, tellweise bioderfrisch Kalkstein ein Utonigen und Kergel, Dioderfrisch Graue, sillig-fensandige Tommergel und Tonstein Graue sillig-ensandige Tommergel und Tonstein Graue sillig-ensandige Tommergel und Tonstein Eisenobilthischer Kalkstein Dunkelgraue, kalkige, sillige Tonsteine mit Siltstein- und kalkigen Sandsteinlagen Graue Kalkmergel, darunter Tommergel, knollige Kalke Sitige, gilmmerführende Tonsteine Bioderfrische Kalke, sillig-feinsandige Tonsteine und Mergel Blunte dolomlische Mergel. Sand- und Siltsteine, Dolomite, vereinzelt Suffat Grünlichgraue, dolomlischer Tommergel mit knolligen Arhydritägen bis massigen Arhydritänken Gebänderfer Arhydritängen bis massigen Arhydritänken Gebänderfer Arhydritängen bis massigen Arhydritänken Gebänderfer Arhydritängen Dolomite, mittellich, mittelliche Siltsge, pelige graue Dolomite, hander, mittelliche gebänderfer Dolomite mit Losungsporen Anhy Graue bis weisse, gebänderfe bis massige Arhydritän mit Tonstein- und dolomitischen Tommergel Twischenlagen Rottiches Steinsalz durchsetz mit Tonstein und Anhydrit Seinschletter An	Silte und Sande, Deckschichten eher kiesig Burted Burte Mergel im Wechsel mit Silt- und Sandsteinen Burte Mergel im Wechsel mit Silt- und Sandsteinen Burte Mergel im Wechsel mit Silt- und Sandsteinen Burke vorwiegend märtlische, salt- und sandsteinen zur Heile, plattige, märtlische Kalksteine, z.T. massige Kalke Durke, vorwiegend märtlische, salt- und verbrechten der Kalksteine (Ouaderkalk) und zuckerkörnige, massige Kalke, tellweise auch Kalksrente und wenig glaukonitührende Kalksteine (Ouaderkalk) und zuckerkörnige, massige Kalke, tellweise auch Kalksrente und wenig glaukonitührende Kalksteine (Massaburge) Mikritische Kalksteine im Wechsel mit Kalkmergeln Deutlich geschichtete, hell- bis beigegraue, mikritische Kalksteine nit onigen Oder mergeligen Zwischenlagen Mikritische Kalksteine im Wechsel mit Kalkmergeln Deutlich geschichtete, hell- bis beigegraue, mikritische Kalksteine nit onigen Oder mergelien Zwischenlagen Mikritische Kalksteine im Wechsel mit Kalkmergeln Deutlich geschichtete, falle und Mergel joldertisch (Sasaburg) Falle geschichtete Kalksteine im Wechsel mit Kalkmergel mit Anschlieben der Stalte und Mergel joldertisch Graue, siltig-einandige Tonnergel und Tonsteine Eisenoolithischer Kalkstein in mit stalten in Mergel schleitlisch Graue, siltig-einandige Mergel biodertisch Graue, siltig-sandige Mergel und sändige Kalke, biodertisch Graue stiltg-sandige Mergel biodertisch Graue, siltig-sandige Mergel und Sandige Kalke biodertisch Graue stiltg-sandige Mergel und Sandige Kalke bis Bis des der Stalte und Kalksteine und Kalksteine und Kalksteine mit Siltsteine, Delomitischer Kalksteine, Siltige Tonsteine mit Siltsteine, Delomitischer Kalksteine, Siltige John werden der Stalte und Kalksteine von der Stalte und Kalksteine v	Bunte Mergel im Wechsel mit Silt- und Sandsteinen Bunkstalter Bunkstalter Heile, plattige, mikritische Kalksteine, z.T. maasige Kalke Dunks voorwegend nitrische Kalksteine (Guader/talk) und zuscherkomige, massige Kalker tellweise auch Kalksternete und vereig steukonftiftriende Kalksteine mit Mergel Bunte Silt und kontinende Kalksteinen gelegen werden der	Bunto Morgel im Wochsel mit Silt- und Sandelseinen Bunto Morgel im Wochsel mit Silt- und Sandelseinen Bunto Morgel im Wochsel mit Silt- und Sandelseinen Bousteln mit Beinnerz Helte, patigs, miknische Kalksteine, z.T. massige Kalko Durkde, vonwegen miknische Kalksteine, z.T. massige Kalko Durkde, vonwegen miknische Kalksteine Helbergeis und verleichter nichtsteine Kalksteine (Cu.darfunkt) und zuschoffbrende Kalksteine Helbergeis und verleichte Kalksteinen Helbergeis und verleichte Kalksteinen Helbergeis und verleichte Kalksteinen Helbergeis und verleichte Kalksteinen (Cu.darfunkt) und vereinig dautzentführende Kalksteinen (Kalksteinen Und Freihreite Kalksteinen in Unter International Kalksteinen Unternational Kalksteinen (Kalksteinen und Verleichte) Maritanen Kalksteinen im Wechsel mit Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen und Kerpel Auftrechte) Maritanen Kalkstein im Wechsel mit Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen Unternational Kalksteinen (Kalksteinen Unternational Kalksteinen U	110 Technology in Worksel mt Silk und Sandsteinen Gehalten mt Behenz Fehalten mt Be	Solito Large Sando, Dicidezhication often everiging Burtho Margol im Wochsel and Silt-und Sandsteinen Burtho Margol im Wochsel and Silt-und Sandsteinen Coultation mil Bohrmur. Coultation mill Boh

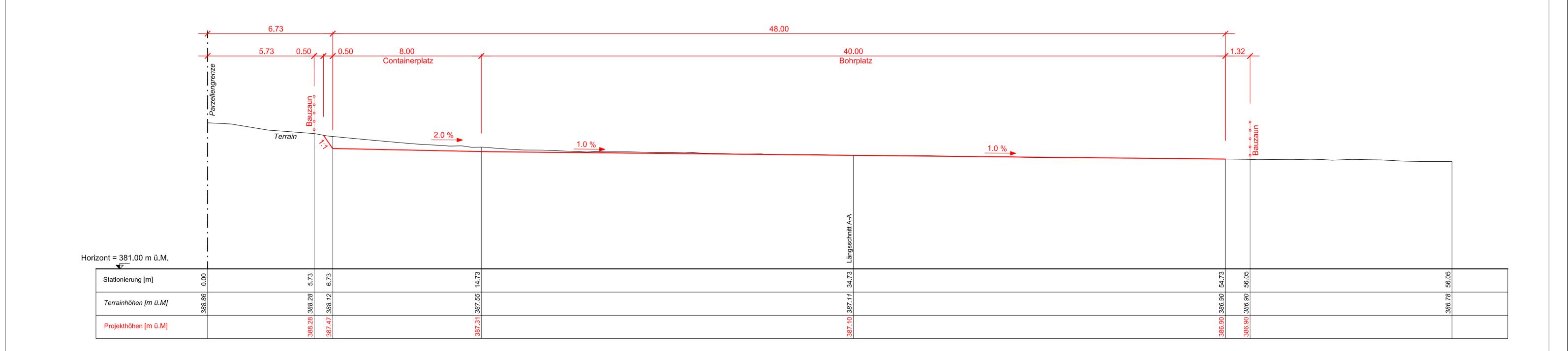



nagra		NSG 16-13			
Schematisches geologisches Prognoseprofil für die Sondierbohrungen Rheinau					
Standortgebiet Zürich Nordost (ZNO)	DAT.: Aug. 2016	BEILAGE 3			

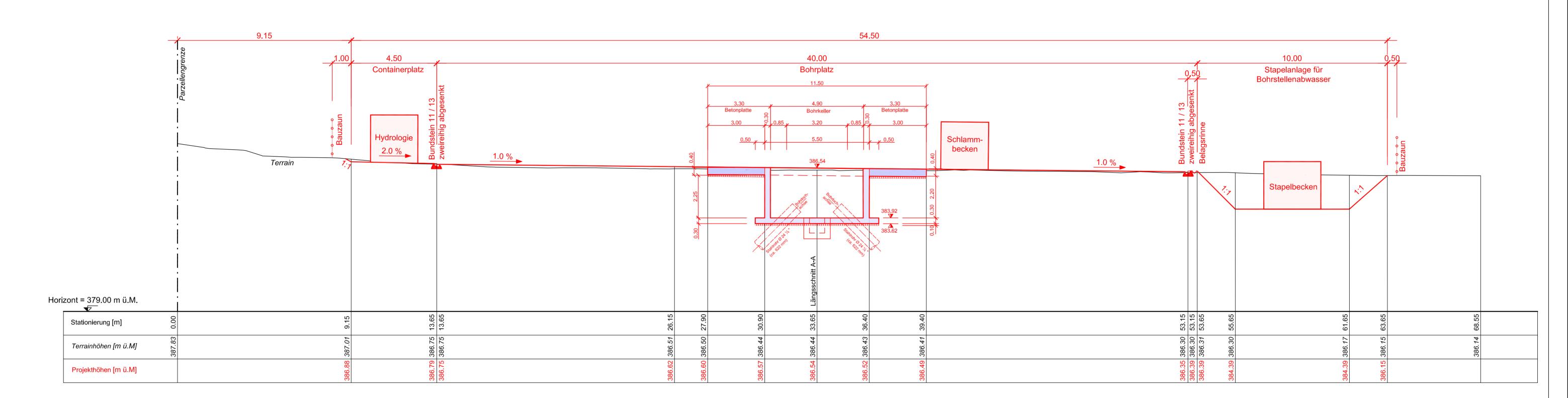
Legende Darstellung:

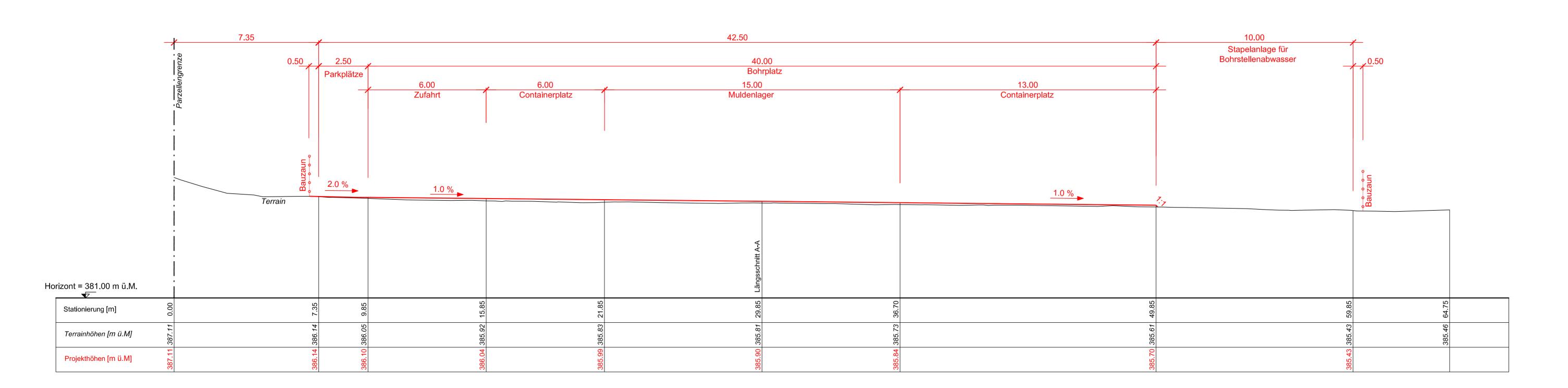




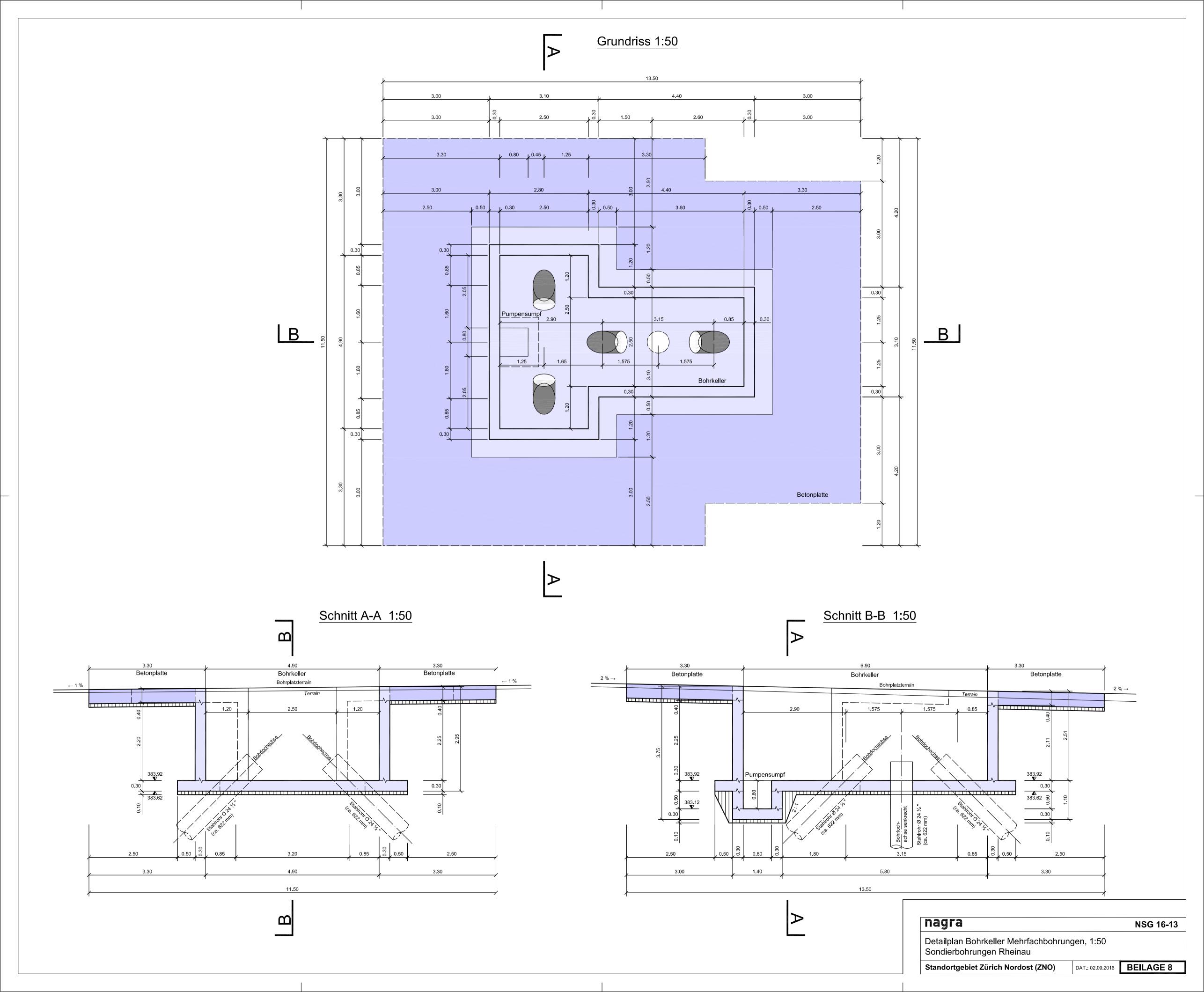

Standortgebiet Zürich Nordost (ZNO)

DAT.: 02.09.2016

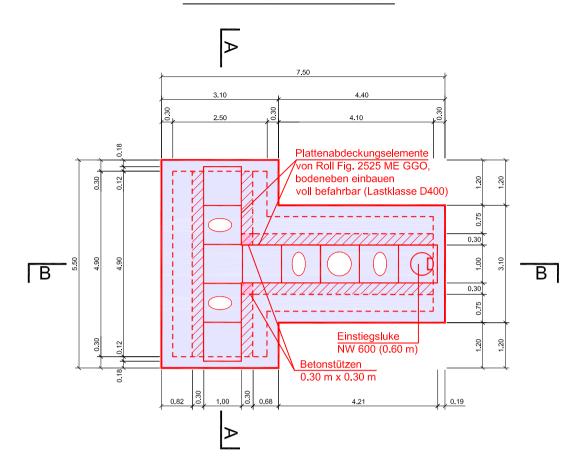

BEILAGE 4



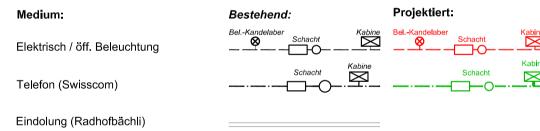
Querschnitt 2-2, 1:100



Querschnitt 3-3, 1:100

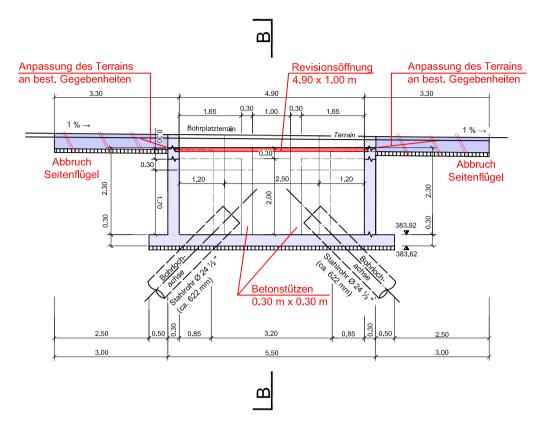


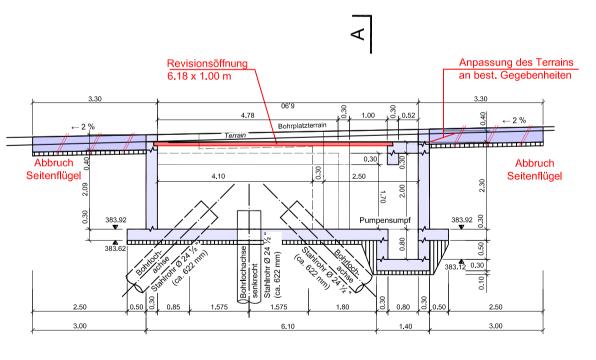
nagra NSG 16-13 Querschnitte 1-1 bis 3-3, 1:100 Sondierbohrungen Rheinau


Standortgebiet Zürich Nordost (ZNO) DAT.: 02.09.2016 **BEILAGE 7**

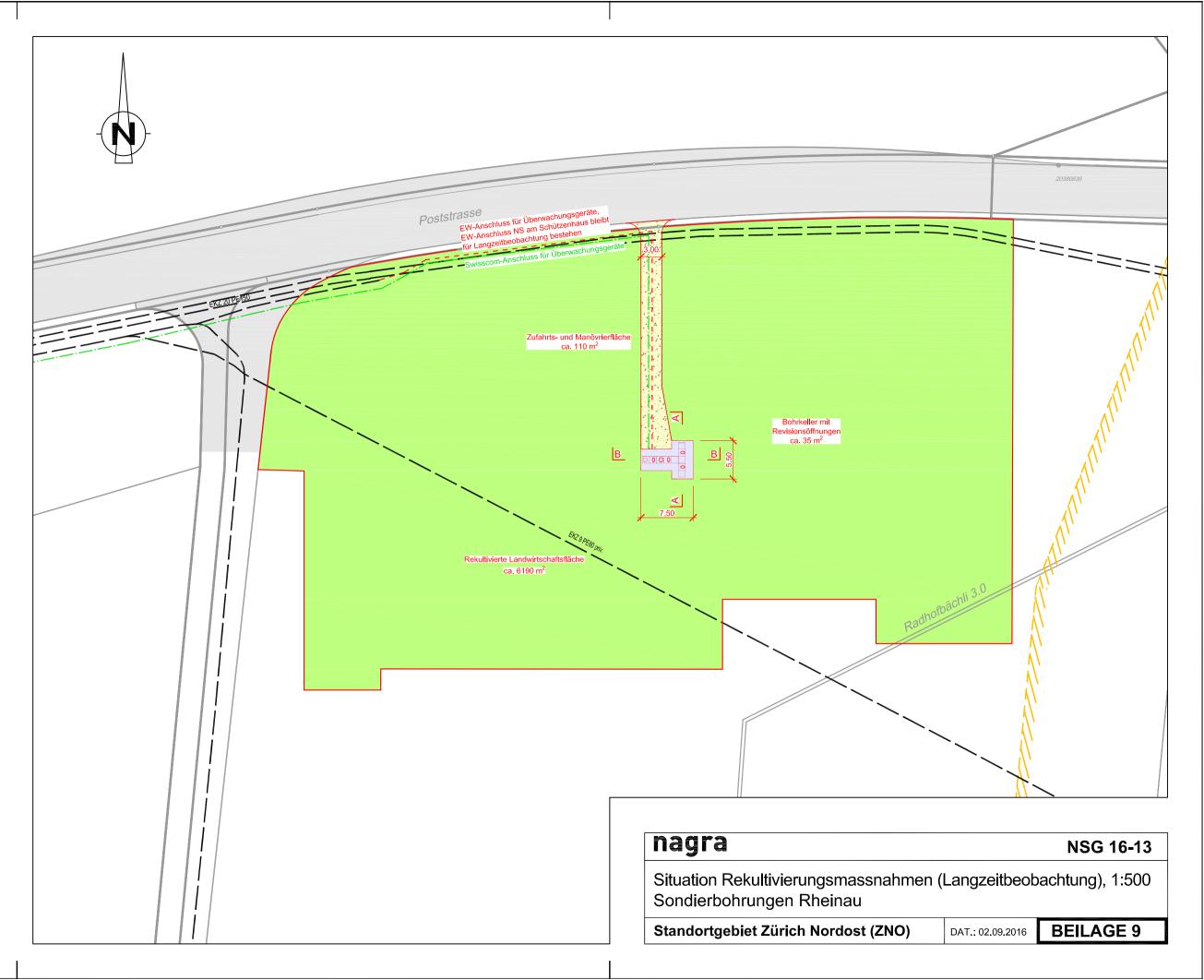
Grundriss Bohrkeller

Legende Werkleitungen:


Legende Darstellung:


Basisdaten: AV-Grundlage vom 09.12.2015 (Techn. Stand: AV 93 / LV 03)

Best. Werkleitungen schematisch und ohne Gewähr für Lage und Vollständigkeit. Für Detailangaben sind die entsprechenden Werke zuständig. Für die Realisierung sind durch die ausführenden Unternehmungen aktuelle Katasterpläne von allen Werken anzufordern.


Schemaschnitt A-A

Schemaschnitt B-B

